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We consider the blow-up criteria for the Cauchy problems of three-dimensional 
compressible radiation fluids with vacuum. It is shown to own the same BKM-type 
criterion as the compressible Navier–Stokes equations [14], while the Lp̃ (p̃ ∈ [2, 3])
norm of the density gradient should be involved for the Serrin-type criterion.

© 2017 Published by Elsevier Inc.

1. Introduction

This paper is concerned with the blow-up criteria to the strong solution with vacuum for the three-
dimensional compressible isentropic radiation hydrodynamics (RHD) equations. The system is used in 
various astrophysical contexts [18] and in high-temperature plasma physics [17]. The couplings between 
fluid field and radiation field involve momentum source and energy source depending strongly on the spe-
cific radiation intensity derived by the so called radiative transfer integro-differential equation [28]. In 
particular, if the matter is in the local thermodynamical equilibrium (LTE), the system can be governed by 
the following Navier–Stokes–Boltzmann equations:

⎧⎪⎪⎪⎪⎪⎪⎨
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1
c
It + Ω · ∇I = Ar, (v,Ω, t, x) ∈ R+ × S2 × R+ × R3,

ρt + div(ρu) = 0,
(
ρu + 1

c2
Fr

)
t

+ div(ρu⊗ u + Pr) + ∇pm = divT,

(1.1)
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where ρ(t, x), u(t, x) = (u1, u2, u3) and I(v, Ω, t, x) denote the density, velocity field and specific radiation 
intensity, respectively.

In this system, S2 is the unit sphere in R3, v is the frequency of photon and Ω is the travel direction of 
photon. The associated material pressure pm is given by the state equation

pm = Aργ (1.2)

for some positive constant A and adiabatic index γ > 1. Meanwhile, the stress tensor T equals

T = μ
(
∇u + (∇u)�

)
+ λ (divu) I3, (1.3)

where I3 is the 3 ×3 unit matrix, μ > 0 and λ + 2
3μ ≥ 0 are the shear viscosity coefficient and bulk viscosity 

coefficient, respectively. These ensure the ellipticity of the Lamé operator.
As to the radiation part, the radiation flux Fr and the radiation pressure tensor Pr are defined by

Fr =
∞∫
0

∫
S2

I(v,Ω, t, x)ΩdΩdv, Pr = 1
c

∞∫
0

∫
S2

I(v,Ω, t, x)Ω ⊗ ΩdΩdv,

and the collision term Ar in radiation transfer equation can be expressed as

Ar = S − σaI +
∞∫
0

∫
S2

( v

v′
σsI

′ − σ′
sI
)
dΩ′dv′,

in which I ′ = I(v′, Ω′, t, x); S = S(v, Ω, t, x) ≥ 0 denotes the rate of energy emission due to spontaneous 
process; σa = σa(v, Ω, t, x, ρ) ≥ 0 is the absorption coefficient that may also depend on the mass density ρ; 
The differential scattering coefficient σs has two different state transitions:

σs ≡ σs(v′ → v,Ω′ · Ω, ρ) = O(ρ), σ′
s ≡ σs(v → v′,Ω · Ω′, ρ) = O(ρ).

Studying the radiation hydrodynamics equations is challenging because of its complexity and mathemat-
ical difficulty. For Navier–Stokes–Boltzmann equations, under some physical assumptions with the mass 
density away from vacuum, the local classical solution of the Cauchy problems was studied by Chen–
Wang [6]. Ducomet and Nečasová [7,8] established the global weak solutions and the large time behavior in 
1-D space. The local existence of strong solutions with vacuum was first established by Li–Zhu [23] when 
the initial data are arbitrarily large. They [22] also considered the formation of singularities to classical 
solutions when the initial mass density is compactly supported. For the inviscid radiation hydrodynamics 
equations (i.e., Euler–Boltzmann equations), we refer to [15–17,24].

As it was shown in [22], if we assume σs = 0, from the induced process and LTE assumption, the 
Navier–Stokes–Boltzmann system (1.1) can be rewritten into
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1
c
It + Ω · ∇I = −Ka

(
I − B̄(v)

)
, (v,Ω, t, x) ∈ R+ × S2 × R+ × R3,

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) + ∇pm = 1
c

∞∫
0

∫
S2

Ka

(
I − B̄(v)

)
ΩdΩdv + divT,

(1.4)
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