Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Firey–Shephard problems for homogeneous measures

^a School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China
 ^b Department of Mathematics, University of Missouri, Columbia, MO 65211, United States

ARTICLE INFO

Article history: Received 10 June 2017 Available online 1 September 2017 Submitted by J. Bastero

Keywords: Fourier transform Shephard problem Convex bodies Measures

ABSTRACT

We introduce a concept of Firey-projection function for μ -measure, which is an extension of L_p -projection body. We consider the Firey–Shephard problem for measures, and connect it with L_p -projection body. Using this connection, we give a negative answer to the Firey–Shephard problem for homogeneous measures for all $p > 1, p \neq n$ and $n \geq 2$. Moreover, we also prove a measure comparison theorem. © 2017 Elsevier Inc. All rights reserved.

霐

CrossMark

1. Introduction

Let \mathcal{K}^n denote the class of convex bodies (compact convex subsets with nonempty interior) in *n*-dimensional Euclidean space \mathbb{R}^n . \mathcal{K}^n_o denotes the subset of convex bodies containing the origin in their interior in \mathcal{K}^n , and \mathcal{K}^n_e denotes the subset of origin-symmetric convex bodies in \mathcal{K}^n_o .

For a convex body K in \mathbb{R}^n , its support function $h_K = h(K, \cdot) : \mathbb{R}^n \to [0, +\infty)$, is defined by $h(K, x) = \max\{x \cdot y : y \in K\}$. For $K, L \in \mathcal{K}^n$ and $\alpha, \beta \ge 0$ (not both zero), we define the Minkowski linear combination $\alpha K + \beta L$ by

$$h(\alpha K + \beta L, u) = \alpha h(K, u) + \beta h(L, u),$$

for $u \in S^{n-1}$. The set sum "+" is called by Minkowski sum.

The Gauss map of K, $\mathcal{V}_K : \partial K \to S^{n-1}$, maps every $x \in \partial K$ to the set of all unit normal vectors of x with respect to K. The surface area measure $S(K, \cdot)$ is the measure on the unit sphere S^{n-1} defined as the push forward to S^{n-1} of the (n-1)-dimensional Hausdorff measure on ∂K via the Gauss map \mathcal{V}_K . The projection body of K, ΠK , is defined by

^{*} Correspondence to: School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China. E-mail address: wudenghui66@163.com.

$$h_{\Pi K}(\theta) = \operatorname{Vol}_{n-1}(K|\theta^{\perp}) = \frac{1}{2} \int_{S^{n-1}} |\theta \cdot u| dS(K, u), \qquad (1.1)$$

for every $\theta \in S^{n-1}$.

In [18], Shephard asks the following problem. Let K, L be origin-symmetric convex bodies in \mathbb{R}^n such that

$$\operatorname{Vol}_{n-1}(K|\theta^{\perp}) \le \operatorname{Vol}_{n-1}(L|\theta^{\perp}),$$

for every $\theta \in S^{n-1}$. Does it follow that

$$\operatorname{Vol}_n(K) \le \operatorname{Vol}_n(L)$$
?

It was shown independently by Petty [13] and Schneider [15] that the answer is affirmative if $n \leq 2$ and negative if $n \geq 3$. In [8], Koldobsky, Ryabogin and Zvavitch give a Fourier analytic solution to Shephard's problem. See [2,6] for its history and applications.

Considering (1.1), we note that the Shephard problem asks whether

$$\Pi K \subseteq \Pi L$$

implies

$$\operatorname{Vol}_n(K) \leq \operatorname{Vol}_n(L).$$

In 1962, Firey [1] extended the notion of the Minkowski sum to L_p -sums of convex bodies for every real p, also called by Firey sum. Let $p \ge 1$ and $\alpha, \beta \ge 0$ (not both zero). For $K, L \in \mathcal{K}_o^n$, L_p -combination $\alpha \cdot K + p \beta \cdot L$ is introduced in [1] by

$$h(\alpha \cdot K +_p \beta \cdot L, u)^p = \alpha h(K, u)^p + \beta h(L, u)^p, \qquad (1.2)$$

for $u \in S^{n-1}$. Note that we use " \cdot " rather than " \cdot_p " to denote Firey scalar multiplication.

After that, Lutwak [10,11] showed that these Firey-sums lead to L_p -Brunn–Minkowski theory, for each $p \geq 1$, which is a great development of the classical Brunn–Minkowski theory. In [10] Lutwak introduced the notion of L_p -surface area measure (see Definition 1.1). The *p*-projection body is given in [11,12] by

$$h(\Pi_p K, \theta)^p = \frac{1}{2n} \int_{S^{n-1}} |\theta \cdot u|^p dS_p(K, u), \qquad \forall \theta \in S^{n-1}.$$
(1.3)

As a generalization of the Shephard problem, Ryabogin and Zvavitch [14] considered the following Firey– Shephard problem. Let $p \ge 1$ and let $K, L \in \mathcal{K}^n$ such that

$$\Pi_p K \subseteq \Pi_p L.$$

Does it follow that

$$\operatorname{Vol}_n(K) \le \operatorname{Vol}_n(L), \quad \text{ for } 1 \le p < n,$$

and

$$\operatorname{Vol}_n(K) \ge \operatorname{Vol}_n(L), \quad \text{for } n < p?$$

Download English Version:

https://daneshyari.com/en/article/8900279

Download Persian Version:

https://daneshyari.com/article/8900279

Daneshyari.com