

Firey-Shephard problems for homogeneous measures

Denghui $\mathrm{Wu}^{\mathrm{a}, \mathrm{b}, *}$
${ }^{\text {a }}$ School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China
b Department of Mathematics, University of Missouri, Columbia, MO 65211, United States

```
A R T I C L E I N F O
```

Article history:
Received 10 June 2017
Available online 1 September 2017
Submitted by J. Bastero

Keywords:

Fourier transform
Shephard problem
Convex bodies
Measures

Abstract

We introduce a concept of Firey-projection function for μ-measure, which is an extension of L_{p}-projection body. We consider the Firey-Shephard problem for measures, and connect it with L_{p}-projection body. Using this connection, we give a negative answer to the Firey-Shephard problem for homogeneous measures for all $p>1, p \neq n$ and $n \geq 2$. Moreover, we also prove a measure comparison theorem.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{K}^{n} denote the class of convex bodies (compact convex subsets with nonempty interior) in n-dimensional Euclidean space \mathbb{R}^{n}. \mathcal{K}_{o}^{n} denotes the subset of convex bodies containing the origin in their interior in \mathcal{K}^{n}, and \mathcal{K}_{e}^{n} denotes the subset of origin-symmetric convex bodies in \mathcal{K}_{o}^{n}.

For a convex body K in \mathbb{R}^{n}, its support function $h_{K}=h(K, \cdot): \mathbb{R}^{n} \rightarrow[0,+\infty)$, is defined by $h(K, x)=$ $\max \{x \cdot y: y \in K\}$. For $K, L \in \mathcal{K}^{n}$ and $\alpha, \beta \geq 0$ (not both zero), we define the Minkowski linear combination $\alpha K+\beta L$ by

$$
h(\alpha K+\beta L, u)=\alpha h(K, u)+\beta h(L, u),
$$

for $u \in S^{n-1}$. The set sum "+" is called by Minkowski sum.
The Gauss map of $K, \mathcal{V}_{K}: \partial K \rightarrow S^{n-1}$, maps every $x \in \partial K$ to the set of all unit normal vectors of x with respect to K. The surface area measure $S(K, \cdot)$ is the measure on the unit sphere S^{n-1} defined as the push forward to S^{n-1} of the $(n-1)$-dimensional Hausdorff measure on ∂K via the Gauss map \mathcal{V}_{K}. The projection body of $K, \Pi K$, is defined by

[^0]\[

$$
\begin{equation*}
h_{\Pi K}(\theta)=\operatorname{Vol}_{n-1}\left(K \mid \theta^{\perp}\right)=\frac{1}{2} \int_{S^{n-1}}|\theta \cdot u| d S(K, u), \tag{1.1}
\end{equation*}
$$

\]

for every $\theta \in S^{n-1}$.
In [18], Shephard asks the following problem. Let K, L be origin-symmetric convex bodies in \mathbb{R}^{n} such that

$$
\operatorname{Vol}_{n-1}\left(K \mid \theta^{\perp}\right) \leq \operatorname{Vol}_{n-1}\left(L \mid \theta^{\perp}\right),
$$

for every $\theta \in S^{n-1}$. Does it follow that

$$
\operatorname{Vol}_{n}(K) \leq \operatorname{Vol}_{n}(L) ?
$$

It was shown independently by Petty [13] and Schneider [15] that the answer is affirmative if $n \leq 2$ and negative if $n \geq 3$. In [8], Koldobsky, Ryabogin and Zvavitch give a Fourier analytic solution to Shephard's problem. See $[2,6]$ for its history and applications.

Considering (1.1), we note that the Shephard problem asks whether

$$
\Pi K \subseteq \Pi L
$$

implies

$$
\operatorname{Vol}_{n}(K) \leq \operatorname{Vol}_{n}(L)
$$

In 1962, Firey [1] extended the notion of the Minkowski sum to L_{p}-sums of convex bodies for every real p, also called by Firey sum. Let $p \geq 1$ and $\alpha, \beta \geq 0$ (not both zero). For $K, L \in \mathcal{K}_{o}^{n}, L_{p}$-combination $\alpha \cdot K+{ }_{p} \beta \cdot L$ is introduced in [1] by

$$
\begin{equation*}
h\left(\alpha \cdot K+{ }_{p} \beta \cdot L, u\right)^{p}=\alpha h(K, u)^{p}+\beta h(L, u)^{p}, \tag{1.2}
\end{equation*}
$$

for $u \in S^{n-1}$. Note that we use "." rather than "• p " to denote Firey scalar multiplication.
After that, Lutwak $[10,11]$ showed that these Firey-sums lead to L_{p}-Brunn-Minkowski theory, for each $p \geq 1$, which is a great development of the classical Brunn-Minkowski theory. In [10] Lutwak introduced the notion of L_{p}-surface area measure (see Definition 1.1). The p-projection body is given in [11,12] by

$$
\begin{equation*}
h\left(\Pi_{p} K, \theta\right)^{p}=\frac{1}{2 n} \int_{S^{n-1}}|\theta \cdot u|^{p} d S_{p}(K, u), \quad \forall \theta \in S^{n-1} . \tag{1.3}
\end{equation*}
$$

As a generalization of the Shephard problem, Ryabogin and Zvavitch [14] considered the following FireyShephard problem. Let $p \geq 1$ and let $K, L \in \mathcal{K}^{n}$ such that

$$
\Pi_{p} K \subseteq \Pi_{p} L
$$

Does it follow that

$$
\operatorname{Vol}_{n}(K) \leq \operatorname{Vol}_{n}(L), \quad \text { for } 1 \leq p<n,
$$

and

$$
\operatorname{Vol}_{n}(K) \geq \operatorname{Vol}_{n}(L), \quad \text { for } n<p ?
$$

https://daneshyari.com/en/article/8900279

Download Persian Version:

https://daneshyari.com/article/8900279

Daneshyari.com

[^0]: * Correspondence to: School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China.

 E-mail address: wudenghui66@163.com.

