

The hybrid-penalized method for the Timoshenko's beam

J.E. Munoz Rivera ${ }^{\text {a }}$, C.A. da Costa Baldez ${ }^{\text {b,* }}$
a Department of Mathematics, Universidad del Bío Bío Concepción, Chile
b Department of Mathematics, Federal University of Pará, Brazil

A R T I C L E I N F O

Article history:

Received 28 December 2016
Available online xxxx
Submitted by K. Nishihara

Keywords:

Timoshenko Beams
Dynamic vibrations
Contact problem
Signorini's problem
Exponential decay
Numerical solutions

Abstract

In this paper we introduce the hybrid-penalized method, to show the global existence of at least one solution to the Signorini's problem for a Timoshenko Beam. The main advantage of this method is that we can improve all result about asymptotic behaviour to contact problem to any boundary conditions, which is not possible with multiplicative techniques. Moreover this method also allows us to show polynomial stability to partial dissipative models. Finally, we performed numerical experiments to highlight our theoretical results.

© 2017 Published by Elsevier Inc.

1. Introduction

We consider the contact problem for the Timoshenko beam configured over the interval $[0, L] \subset \mathbb{R}$ see $[15$, 24]

$$
\begin{aligned}
& \rho A \varphi_{t t}=[S(x, t)]_{x}+F_{1}(x, t), \\
& \rho I \psi_{t t}=[M(x, t)]_{x}-S(x, t)+F_{2}(x, t),
\end{aligned}
$$

where φ, ψ denote the transverse displacement and the rotation angle of a filament, respectively. The functions ρ, A and I stand for the density of the body, area of the cross-section and the inertial model, respectively. By S and M we denote the shear stress and bending moment, respectively. The functions F_{1} and F_{2} represent the body force and moment acting outside the body. The constitutive law we use in this paper is given by

$$
S=\kappa G A\left(\varphi_{x}+\psi\right), \quad M=E I \psi_{x}
$$

[^0]https://doi.org/10.1016/j.jmaa.2017.10.022
0022-247X/© 2017 Published by Elsevier Inc.

Fig. 1. Beam subject to a constraint at the free end L.
where κ is correction factor, E is the Young's modulus, and G is shear modulus. In the sequel, we consider all the parameters as positive constants and assume that $F_{1}(x, t)=f_{1}(x, t)-m \varphi_{t}$ and $F_{2}(x, t)=f_{2}(x, t)-d \psi_{t}$, where $m \varphi_{t}$ and $d \psi_{t}$ models a frictional mechanism effective over the whole beam.

Denoting as

$$
\rho_{1}=\rho A, \quad \rho_{2}=\rho I, \quad k=\kappa G A, \quad b=E I
$$

the Timoshenko's model can be written as

$$
\begin{align*}
& \rho_{1} \varphi_{t t}-k\left(\varphi_{x}+\psi\right)_{x}+m \varphi_{t}=f_{1}(x, t) \\
& \rho_{2} \psi_{t t}-b \psi_{x x}+k\left(\varphi_{x}+\psi\right)+d \psi_{t}=f_{2}(x, t) \tag{1.1}
\end{align*}
$$

The boundary conditions we consider are given by

$$
\begin{equation*}
\varphi(0, t)=\psi(0, t)=\psi(L, t)=0, \quad \forall t \in(0, T) \tag{1.2}
\end{equation*}
$$

On the other hand, in the $x=L$-end we consider two obstacles that can produce contact in the transverse oscillations of the beam.

In Fig. $1 g_{1}$ and g_{2} are the gaps of the obstacle, therefore we have that

$$
\begin{equation*}
g_{1} \leq \varphi(L, t) \leq g_{2}, \quad 0 \leq t \leq T \tag{1.3}
\end{equation*}
$$

In the contact problem we have the following situations

$$
\begin{align*}
& S(L, t)>0 \Rightarrow \varphi(L, t)=g_{1} \\
& S(L, t)=0 \Rightarrow g_{1}<\varphi(L, t)<g_{2} \tag{1.4}\\
& S(L, t)<0 \Rightarrow \varphi(L, t)=g_{2}
\end{align*}
$$

Finally, we consider the initial conditions

$$
\begin{align*}
& \varphi(x, 0)=\varphi_{0}(x), \quad \varphi_{t}(x, 0)=\varphi_{1}(x), \quad \forall x \in(0, L) \tag{1.5}\\
& \psi(x, 0)=\psi_{0}(x), \quad \psi_{t}(x, 0)=\psi_{1}(x), \forall x \in(0, L) \tag{1.6}
\end{align*}
$$

Concerning the existence of solutions to Signorini's problem we have the pioneer work of Kim $[12,13]$ who showed the global existence of at least one solution (until now the uniqueness of this problem is an

https://daneshyari.com/en/article/8900288

Download Persian Version:

https://daneshyari.com/article/8900288

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jemunozrivera@gmail.com (J.E. Munoz Rivera), baldez@ufpa.br (C.A. da Costa Baldez).

