Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Local approximation of non-holomorphic discs in almost complex manifolds

Florian Bertrand^a, Uroš Kuzman^{b,*}

^a Department of Mathematics, American University of Beirut, Beirut, Lebanon
^b Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

ARTICLE INFO

Article history: Received 10 May 2017 Available online 1 September 2017 Submitted by E.J. Straube

Keywords: J-holomorphic discs Almost complex manifolds Gluing

ABSTRACT

We provide a local approximation result of non-holomorphic discs with small $\bar{\partial}$ by pseudoholomorphic ones. As an application, we provide a certain gluing construction.

@ 2017 Elsevier Inc. All rights reserved.

0. Introduction

In [11], J.-P. Rosay stated the following problem for complex manifolds: can a smooth non-holomorphic disc φ with a small $\overline{\partial}\varphi$ always be approximated by a holomorphic one? The question is very general and, in fact, his paper itself contains a counterexample in a compact Riemann surface of genus ≥ 2 (due to L. Lempert). However, under certain restrictions on the initial disc φ the answer turned out to be positive.

In this paper we address the same question but for the case of non-integrable structures. In particular, we give sufficient conditions for such an approximation result to be valid locally in (\mathbb{R}^{2n}, J) (Theorem 5). We stress that, in contrast with the integrable case, a certain uniform bound is imposed on the L^p -norm of the differential $d\varphi$. The proof is based on the implicit function theorem for the linearization of the $\overline{\partial}_J$ operator and a careful study of the existence of a bounded right inverse (Theorem 2).

Finally, motivated by [7,8] we present in the last section an application of the above result. More precisely, we glue together two *J*-holomorphic halves of an unit disc in order to obtain one holomorphic object.

Corresponding author. E-mail addresses: fb31@aub.edu.lb (F. Bertrand), uros.kuzman@gmail.com (U. Kuzman).

1. Preliminaries

Throughout the paper we denote by Δ the open unit disc in \mathbb{C} .

1.1. Almost complex manifolds and pseudoholomorphic discs

Let M be a real smooth manifold M. An almost complex structure J on M is a (1, 1) tensor field satisfying $J^2 = -Id$. The pair (M, J) is called an almost complex manifold. Let J_{st} be the standard structure on \mathbb{R}^{2n} , that is, $(\mathbb{R}^{2n}, J_{st}) \cong \mathbb{C}^n$. A differentiable map $u: (M', J') \longrightarrow (M, J)$ between two almost complex manifolds is (J', J)-holomorphic if it satisfies

$$J(u(q)) \circ d_q u = d_q u \circ J'(q),$$

for every $q \in M'$, where $d_q u$ denotes the differential map of u at q. When M' is the unit disc Δ , then such a map $u : \Delta \to (M, J)$ is called a *J*-holomorphic disc. Equivalently, u is a *J*-holomorphic disc whenever the following non-linear operator vanishes

$$\overline{\partial}_J u(v) = \frac{1}{2} \left(du(v) + J(u) du(J_{st}v) \right) = 0.$$

1.2. The local equation

Suppose that J is a smooth almost complex structure defined in an open set $U \subseteq \mathbb{R}^{2n}$. Then it may be represented by a \mathbb{R} -linear operator $J(z): \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ satisfying $J(z)^2 = -Id$. Further, the J-holomorphy equation for a J-holomorphic disc $u: \Delta \to U \subseteq \mathbb{R}^{2n}$ can be written as

$$\frac{\partial u}{\partial y} - J(u) \frac{\partial u}{\partial x} = 0.$$

Moreover, we can rewrite it in its complex form

$$u_{\bar{\zeta}} + A(u)\overline{u_{\zeta}} = 0, \tag{1}$$

where $\zeta = x + iy \in \mathbb{C}$ and

$$A(z)(v) = (J_{st} + J(z))^{-1}(J(z) - J_{st})(\bar{v})$$

is a complex linear endomorphism for every $z \in U$ and $v \in \mathbb{C}^n$. Hence A can be considered as a $n \times n$ complex matrix of the same regularity as J(z) acting on $v \in \mathbb{C}^n$. We call A the complex matrix of J.

Note that the above complex form (1) is valid only when $J(z) + J_{st}$ is invertible. This, in particular, can be achieved locally by a change of coordinates in a neighborhood of any given point [4, Lemma 1] or in a neighborhood of $u(\overline{\Delta})$ where $u: \overline{\Delta} \to \mathbb{R}^{2n}$ is an embedded *J*-holomorphic disc (see the Appendix in [6]); or globally, when *J* is tamed by the standard symplectic form ω_{st} [1] (see also [13, Proposition 2.8]). We denote by \mathcal{J} the set of all smooth structures on \mathbb{R}^{2n} satisfying such a condition and remark that it is in a one-to-one correspondence with the set of complex matrices *A* satisfying the condition $\det(I - A\overline{A}) \neq 0$ (see [12]).

1.3. Sobolev spaces and the Cauchy–Green operator

Let p > 2 and $k \in \mathbb{N}$. Let $\Omega \subset \mathbb{C}$ be bounded. We denote by $L^p(\Omega)$ the classical Lebesgue space and by $W^{k,p}(\Omega)$ the Sobolev space of maps $u \colon \Omega \to \mathbb{C}^n$ whose derivatives up to order k are in $L^p(\Omega)$. We sometimes

Download English Version:

https://daneshyari.com/en/article/8900289

Download Persian Version:

https://daneshyari.com/article/8900289

Daneshyari.com