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In this paper we present a novel approach towards variance reduction for discretised 
diffusion processes. The proposed approach involves specially constructed control 
variates and allows for a significant reduction in the variance for the terminal 
functionals. In this way the complexity order of the standard Monte Carlo algorithm 
(ε−3 in the case of a first order scheme and ε−2.5 in the case of a second order scheme) 
can be reduced down to ε−2+δ for any δ ∈ [0, 0.25) with ε being the precision to be 
achieved. These theoretical results are illustrated by several numerical examples.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let T > 0 be a fixed time horizon. Consider a d-dimensional diffusion process (Xt)t∈[0,T ] defined by the 
Itô stochastic differential equation

dXt = μ(Xt) dt + σ(Xt) dWt, X0 = x0 ∈ R
d, (1.1)

for Lipschitz continuous functions μ : Rd → R
d and σ : Rd → R

d×m, where (Wt)t∈[0,T ] is a standard 
m-dimensional Brownian motion. Recall that, since μ and σ are Lipschitz, the stochastic differential equa-
tion (1.1) has a strong solution, and pathwise uniqueness holds. Suppose we want to find a continuous 
function

u : [0, T ] × R
d → R,
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which has a continuous first derivative with respect to the time argument and continuous first and second 
derivatives with respect to the components of the space argument on [0, T ) × R

d such that it solves the 
partial differential equation

∂u

∂t
+ Lu = 0 on [0, T ) × R

d, (1.2)

u(T, x) = f(x) for x ∈ R
d, (1.3)

where f is a given continuous function on R
d. Here and in what follows, t denotes the time argument, 

x denotes the space argument of u, and L is the differential operator associated with the equation (1.1):

(Lu)(t, x) :=
d∑

i=1
μi(x) ∂u

∂xi
(t, x) + 1

2

d∑
i,j=1

(σσ�)ij(x) ∂2u

∂xi∂xj
(t, x),

where σ� denotes the transpose of σ, and the components of μ and σσ� (and later the ones of σ) are 
denoted by superscripts. Under appropriate conditions on μ, σ and f , there is a solution of the Cauchy 
problem (1.2)–(1.3), which is unique in the class of solutions satisfying certain growth conditions, and it 
has the following Feynman–Kac stochastic representation

u(t, x) = E[f(Xt,x
T )]

(see Section 5.7 in [4]), where Xt,x denotes the solution started at time t in point x. Moreover it holds (see 
e.g. Newton [12])

E[f(X0,x
T )|X0,x

t ] = u(t,X0,x
t ), a.s.

for t ∈ [0, T ] and

f(X0,x
T ) = E[f(X0,x

T )] + M∗
T , a.s. (1.4)

with

M∗
T :=

T∫
0

∇xu(t,X0,x
t )σ(X0,x

t ) dWt =
T∫

0

d∑
i=1

∂u

∂xi
(t,X0,x

t )
m∑
j=1

σij(X0,x
t ) dW j

t . (1.5)

The standard Monte Carlo (SMC) approach for computing u(0, x) at a fixed point x ∈ R
d consists of three 

steps. First an approximation XT for X0,x
T is constructed via a time discretisation of the equation (1.1)

(we refer to [5] for a nice overview of various discretisation schemes). Next N0 independent copies of the 
approximation XT are generated and finally a Monte Carlo estimate VN0 is defined as an average of the 
values of f at simulated points:

VN0 := 1
N0

N0∑
i=1

f
(
X

(i)
T

)
.

In the computation of u(0, x) = E[f(X0,x
T )] by the SMC approach there are two types of error inherent: 

a discretisation error E[f(X0,x
T )] − E[f(XT )] and a Monte Carlo (statistical) error, which results from the 

substitution of E[f(XT )] with the sample average VN0 . The aim of variance reduction methods is to reduce 
the statistical error. For example, in the so-called control variate variance reduction approach one looks 
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