ARTICLE IN <u>PRESS</u>

J. Math. Anal. Appl. ••• (••••) •••-••

ELSEVIER

Contents lists available at ScienceDirect

YJMAA:21748

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Dynamics for a class of non-autonomous degenerate p-Laplacian equations

Wen Tan^{a,b,*}

 ^a School of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060, China
 ^b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China

ARTICLE INFO

Article history: Received 20 June 2017 Available online xxxx Submitted by A. Lunardi

Keywords: Non-autonomous Degenerate *p*-Laplacian equations Pullback attractors Higher-order attraction ABSTRACT

In this paper, we investigate a class of non-autonomous degenerate $p\operatorname{-Laplacian}$ equations

$$\partial_t u - \operatorname{div}(a(x)|\nabla u|^{p-2}\nabla u) + \lambda u + f(u) = g(x,t)$$

in Ω , where a(x) is allowed to vanish on a nonempty closed subset with Lebesgue measure zero, $g(x,t) \in L_{loc}^{p'}(\mathbb{R}; D^{-1,p'}(\Omega, a))$ and Ω an unbounded domain in \mathbb{R}^N . We first establish the well-posedness of these equations by constructing a compact embedding. Then we show the existence of the minimal pullback \mathscr{D}_{μ} -attractor, and prove that it indeed attracts the \mathscr{D}_{μ} class in $L^{2+\delta}$ -norm for any $\delta \in [0, \infty)$. Our results extend some known ones in previously published papers.

@ 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we are concerned with the following non-autonomous degenerate p-Laplacian equation in an unbounded and smooth domain Ω in $\mathbb{R}^{N}(N > 2)$,

$$\begin{cases} \frac{\partial u}{\partial t} - \operatorname{div}(a(x)|\nabla u|^{p-2}\nabla u) + \lambda u + f(u) = g(x,t) & \text{in } \Omega \times (\tau,\infty), \\ u(x,t) = 0 & \text{on } \partial\Omega \times [\tau,\infty), \\ u(x,\tau) = u_{\tau} & \text{in } \Omega, \end{cases}$$
(1.1)

where $p \in (2, N)$, $u_{\tau} \in L^2(\Omega)$ and $\tau \in \mathbb{R}$ is the initial time. The variable diffusion coefficient a(x) is a nonnegative and continuous function on the closure of Ω , which is denoted by $\overline{\Omega}$. Here the degeneracy

https://doi.org/10.1016/j.jmaa.2017.10.030 0022-247X/© 2017 Elsevier Inc. All rights reserved.

^{*} Correspondence to: School of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060, China. E-mail address: tanw@szu.edu.cn.

Please cite this article in press as: W. Tan, Dynamics for a class of non-autonomous degenerate *p*-Laplacian equations, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2017.10.030

 $\mathbf{2}$

ARTICLE IN PRESS

W. Tan / J. Math. Anal. Appl. ••• (••••) •••-•••

means that a(x) vanishes on some nonempty subsets of Ω . We assume that a(x) satisfies the following two conditions.

 (\mathcal{H}_{α}) There exist constants r > 0, $\alpha \in (0, p)$ and a subset $\Sigma \subset \Omega$ with properties $\Sigma \neq \emptyset$, $\Sigma = \overline{\Sigma}$ and $\mathcal{L}^{N}(\Sigma) = 0$, where $\overline{\Sigma}$ denotes the closure of Σ , $\mathcal{L}^{N}(\Sigma)$ denotes the Lebesgue measure of Σ on \mathbb{R}^{N} , such that

$$\begin{cases} a(x) = 0 & \text{if } x \in \Sigma, \\ a(x) > 0 & \text{if } x \in \overline{\Omega}/\overline{\Sigma}, \end{cases}$$

and

$$\int_{\Omega \cap B_r(x_0)} \frac{1}{a(x)^{\frac{N}{\alpha}}} dx < +\infty, \quad \text{for any} \ x_0 \in \Sigma;$$
(1.2)

 $(\mathcal{H}^{\infty}_{\beta})$ There exists $\beta \in (p + \frac{N}{2}(p-2), (p-1)N]$ such that $\liminf_{|x| \to \infty} |x|^{-\beta} a(x) > 0$.

The condition (\mathcal{H}_{α}) implies that the variable diffusion coefficient is allowed to vanish on a nonempty closed subset of Ω with N-dimensional Lebesgue measure zero, and the rate of degeneracy of a(x) is measured by (1.2).

We assume that the nonlinear term $f \in C^1(\mathbb{R}, \mathbb{R})$ satisfies the following conditions:

$$\exists C_1, C_2, k_1, k_2 > 0, q \ge 2, k_1 < \lambda, \text{ s.t. } C_1 |s|^q - k_1 |s|^2 \le f(s)s \le C_2 |s|^q + k_2 |s|^2, \ \forall s \in \mathbb{R},$$
(1.3)

and

$$\exists l > 0, \text{ s.t. } f'(s) \ge -l, \quad \forall s \in \mathbb{R}.$$
(1.4)

Suppose that the time-depending forcing term g satisfies

$$g \in L^{p'}_{loc}(\mathbb{R}; D^{-1,p'}(\Omega, a)), \tag{1.5}$$

where $D^{-1,p'}(\Omega, a)$ is the dual space of the weighted Sobolev space $D_0^{1,p}(\Omega, a)$ (see Section 2.1 for its definition), and p' is the conjugate exponent of p, i.e., $\frac{1}{p} + \frac{1}{p'} = 1$.

Evolution equations of type (1.1) occur in many fields: mechanics, physics, chemistry and materials science (non-Newtonian fluids, flows in porous media, electromagnetic phenomena in nonhomogeneous superconductors, etc.), see e.g. [5,6,11,15,17]. The physical meaning of the variable diffusion coefficients of these equations can be seen in the theory of superconductivity. Indeed, the coefficient represents the equilibrium density of superconducting electrons in a material. When the conduction of a material is inhomogeneous, the density can be considered as a function of position (see [12,18,19]).

In the study of nonhomogeneous superconductors, the degeneracy is related to materials which at some points behave as *perfect insulators*. Following Dautray and Lions' book [14], on the one hand, it is natural to assume that the coefficient a(x) vanishes on some points when a medium is perfectly insulating at these points, and in this case (\mathcal{H}_{α}) means that a medium acts as perfect insulators on some "thin layers" in the interior of the medium. On the other hand, when a medium is perfectly conducting near the infinity, we can assume naturally that a(x) is strictly monotone increasing with respect to the module of x, in which case the meaning of $(\mathcal{H}^{\infty}_{\beta})$ is that a medium behaves as a perfect conductor.

It is worth mentioning that the first assumption on the diffusion coefficient is proposed by Caldiroli and Musina [8], which is formulated as follows:

Please cite this article in press as: W. Tan, Dynamics for a class of non-autonomous degenerate *p*-Laplacian equations, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2017.10.030

Download English Version:

https://daneshyari.com/en/article/8900320

Download Persian Version:

https://daneshyari.com/article/8900320

Daneshyari.com