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The primitive three-dimensional viscous equations for large-scale atmosphere 
dynamics are commonly used in weather and climate predictions, and multiple 
theoretical analyses have been performed on them. However, few studies have 
considered topographic effects, which have a remarkable influence on climate factors 
(e.g., atmospheric temperature and wind velocity). In this study, a climate dynamics 
model with topography and non-stationary external force effects based on the 
Navier–Stokes equations and a temperature equation is analyzed. The existence 
and uniqueness of a global strong solution for this system is demonstrated based on 
the initial data assumptions. In addition, the existence of a universal attractor in 
the dynamic system is confirmed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The so-called primitive atmospheric equations were first derived by Richardson [20] and consisted of the 
hydrodynamic equations with the Coriolis force and the thermodynamic equations. However, the system 
was too complicated to be studied theoretically or to be solved numerically. By making the hydrostatic 
approximation, the primitive equations were formulated into the Navier–Stokes equations with the Coriolis 
force, the thermodynamic equations and the diffusion equation for vapor [16,19,24]. Most models have not 
discussed the effects of topography or changes of the external forcing with time. However, many observations 
have indicated that such environmental conditions play a vital role in climate dynamics. To describe realistic 
conditions, Zeng [25] modified the climate dynamics model mentioned in [16,19,24] in the following ways: 
(1) the effects of topography on the climate dynamics were considered; (2) non-stationary external forcing 
(e.g., diabatic atmospheric heating) was included; (3) the upper atmospheric pressure was set to zero rather 
than a small positive constant; and (4) the anelastic approximation was not used in the dynamic system.
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We introduce a moving frame (θ, λ, ζ, t), where θ ∈ [0, π] is the colatitude, λ ∈ [0, 2π] is the longitude, and 
ζ = p/ps ∈ [0, 1], p ∈ [0, ps] is the atmospheric pressure, ps(θ, λ, t) is the atmospheric pressure on the surface 
of the earth and t is the time. The atmospheric state functions can be defined by the atmospheric horizontal 
velocity V = (vθ, vλ), vertical velocity ζ̇, temperature deviation T ′, geopotential deviation Φ′ and earth 
surface pressure deviation p′s if the reference standard temperature T̃ (ζ), reference standard geopotential 
Φ̃(ζ) and reference standard earth surface pressure p̃s(θ, λ) are given. T ′ suggests that T̃ (ζ) +T ′(θ, λ, ζ, t) is 
the atmospheric temperature T (θ, λ, ζ, t), Φ′ suggests that Φ̃(ζ) +Φ′(θ, λ, ζ, t) is the geopotential Φ(θ, λ, ζ, t)
and p′s suggests that p̃s(θ, λ) + p′s(θ, λ, t) is the surface pressure of earth ps(θ, λ, t). All of these conditions 
satisfy the following system
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where ω is the angular velocity of the earth; g is the acceleration due to gravity; c0, cp and R are the 

thermodynamics parameters; μi and νi(i = 1, 2) are the diffusion coefficients; 2ω cos θ
(

0 −1
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)
V denotes 

the Coriolis force on the atmosphere; Ψ is the diabatic atmospheric heating as a function of (θ, λ, ζ, t) and 
stands for the effect of the non-constant external force on the atmospheric system.

The differential operators grad := ∇, div := ∇· and Δ on the spherical surface take the following forms
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where a is the radius of the earth. The vertical scale of the atmosphere is very smaller compared to the radius 
of the earth. Therefore, the geocentric distance r is replaced by the radius of the earth in the differential 
operators. The above equations are studied on Ω ×[0, M ] := S2×[0, 1] ×[0, M ] = [0, π] ×[0, 2π] ×[0, 1] ×[0, M ], 
where M > 0.

Moreover, in (1.1), we find that
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