Several inequalities For log-convex functions

Merve Avci ArdiÇÇ, ${ }^{\mathrm{a}, *}$, Ahmet Ocak Akdemir ${ }^{\mathrm{b}}$, M. Emin Özdemir ${ }^{\text {c }}$
${ }^{\text {a }}$ Adiyaman University, Faculty of Science and Arts, Department of Mathematics, Adlyaman, Turkey
${ }^{\mathrm{b}}$ Ağrı İbrahim Çeçen University, Faculty of Science and Arts, Department of Mathematics, 04100, Ağrı, Turkey
${ }^{\text {c }}$ Uludă̆ University, Faculty of Education, Department of Mathematics, Görükle Campus, Bursa, Turkey
Received 18 November 2017; received in revised form 9 February 2018; accepted 24 March 2018
Available online xxxx

Abstract

In this paper, we recall Ostrowski's inequality, Hadamard's inequality and the definition of \log-convex functions. We also mention an useful integral identity in the first part of our study. The second part of our study includes new results. We prove new generalizations for log-convex functions. Several new Ostrowski type inequalities have been established and some special cases have been given by choosing $h=0$ or $x=\frac{a+b}{2}$. © 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: log-convex functions; Ostrowski inequality; Hermite-Hadamard inequality; Hölder inequality

1. Introduction

Let $f: I \subset[0, \infty) \rightarrow \mathbb{R}$ be a differentiable function on I°, the interior of the interval I, such that $f^{\prime} \in L[a, b]$ where $a, b \in I$ with $a<b$. If $\left|f^{\prime}(x)\right| \leq M$, then the following inequality holds:

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(u) d u\right| \leq \frac{M}{b-a}\left[\frac{(x-a)^{2}+(b-x)^{2}}{2}\right] . \tag{1.1}
\end{equation*}
$$

This inequality is well known in the literature as the Ostrowski inequality.
The following inequality is well known in the literature as the Hermite-Hadamard integral inequality:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.2}
\end{equation*}
$$

where $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is a convex function on the interval I of real numbers and $a, b \in I$ with $a<b$.

[^0]
ARTICLE IN PRESS

In [1], Pečarić et al. mentioned log-convex functions as follows:
A function $f: I \rightarrow[0, \infty)$ is said to be log-convex or multiplicatively convex if $\log f$ is convex, or, equivalently, for all $x, y \in I$ and $t \in[0,1]$ one has the inequality

$$
f(t x+(1-t) y) \leq[f(x)]^{t}[f(y)]^{1-t} .
$$

Example 1. The function $f(x)=\frac{1}{x}, x \in(0, \infty)$ is log-convex on $(0, \infty)$. The function $f(x)=x^{x}, x>0$ or $f(x)=e^{x}+1, x \in \mathbb{R}$, etc.

Many different extensions, generalizations and improvements related to log-convex functions can be found in [1-9]. In order to prove our main results we use the following equality from [10] that is mentioned in [11]:

Lemma 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping on (a, b), then this equality holds

$$
\begin{aligned}
\int_{a}^{b} f(t) d t= & (b-a)(1-h) f(x)-(b-a)(1-h)\left(x-\frac{a+b}{2}\right) f^{\prime}(x) \\
& +h \frac{b-a}{2}(f(a)+f(b))-\frac{h^{2}(b-a)^{2}}{8}\left(f^{\prime}(b)-f^{\prime}(a)\right)+\int_{a}^{b} K(x, t) f^{\prime \prime}(t) d t
\end{aligned}
$$

for all $x \in\left[a+h \frac{b-a}{2}, b-h \frac{b-a}{2}\right]$ and $h \in[0,1]$. Here $K:[a, b]^{2} \rightarrow \mathbb{R}$

$$
K(x, t)= \begin{cases}\frac{1}{2}\left[t-\left(a+h \frac{b-a}{2}\right)\right]^{2}, & \text { if } t \in[a, x] \\ \frac{1}{2}\left[t-\left(b-h \frac{b-a}{2}\right)\right]^{2}, & \text { if } t \in(x, b]\end{cases}
$$

The main purpose of this paper is to give some new integral inequalities of Ostrowski type for logarithmically convex functions by using the above lemma.

2. Main results

Let us start our first result:
Theorem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a twice differentiable mapping on (a, b). If $\left|f^{\prime \prime}\right|$ is \log-convex, the following inequality holds for all $x \in\left[a+h \frac{b-a}{2}, b-h \frac{b-a}{2}\right]$:

$$
\begin{aligned}
& \left\lvert\, \int_{a}^{b} f(t) d t-(b-a)(1-h) f(x)+(b-a)(1-h)\left(x-\frac{a+b}{2}\right) f^{\prime}(x)\right. \\
& \left.-h \frac{b-a}{2}(f(a)+f(b))+\frac{h^{2}(b-a)^{2}}{8}\left(f^{\prime}(b)-f^{\prime}(a)\right) \right\rvert\, \\
\leq & \frac{1}{2}\left[\left(\frac{\left|f^{\prime \prime}(a)\right|^{x}}{\left|f^{\prime \prime}(x)\right|^{a}}\right)^{\frac{1}{x-a}} \tau_{1}+\left(\frac{\left|f^{\prime \prime}(x)\right|^{b}}{\left|f^{\prime \prime}(b)\right|^{x}}\right)^{\frac{1}{b-x}} \tau_{2}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\tau_{1}= & {\left[x-\left(a+h \frac{b-a}{2}\right)\right]^{2} \frac{T^{x}}{\ln T}-h^{2} \frac{(b-a)^{2}}{4} \frac{T^{a}}{\ln T} } \\
& -\frac{2}{(\ln T)^{2}}\left[x-\left(a+h \frac{b-a}{2}\right)\right] T^{x} \\
& +h \frac{b-a}{(\ln T)^{2}} T^{a}+\frac{2}{(\ln T)^{3}}\left[T^{x}-T^{a}\right],
\end{aligned}
$$

https://daneshyari.com/en/article/8900356

Download Persian Version:

https://daneshyari.com/article/8900356

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: merveavci@ymail.com (M.A. ArdiÇ), ahmetakdemir@agri.edu.tr (A.O. Akdemir), eminozdemir@uludag.edu.tr (M.E. Özdemir).

 Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.
 https://doi.org/10.1016/j.trmi.2018.03.004
 2346-8092/© 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

