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Abstract

Let X be a topological space and F = {Fα} be a direct system of all compact subsets Fα of X , directed by inclusions. For
any homology theory H∗ the groups {H∗(Fα) | Fα ⊂ X} constitute a direct system, and the maps H∗(Fα) → H∗(X ) define a
homomorphism i∗ : lim

−→
H∗(Fα)→ H∗(X ).

As is known (Theorem 4.4.6, Spanier, 1966), for the singular homology, the homomorphism i∗ is an isomorphism

i∗ : lim
−→

H s
∗ (Fα)

∼
−→ H s

∗ (X ). (1)

Using the isomorphism (1), it is proved that for the homologies having compact support H there is the uniqueness theorem on the
category of polyhedral pairs (Theorem 4.8.14, Spanier, 1966).

Since the singular homology theory is a homology theory with compact supports, the uniqueness theorem connects all homology
theories having compact supports with the singular homology theory.

Let H∗ be a cohomology theory. The groups {H∗(Fα) | Fα ⊂ X} constitute an inverse system, and the maps H∗(X )→ H∗(Fα)
define a homomorphism

i∗ : H∗(X )→ lim
←−

H∗(Fα).

Since the homology functor does not commute with inverse limits, it is not true that the singular cohomology of a space is
isomorphic to the inverse limit of the singular cohomology of its compact subsets (that is, there is no general cohomology analogue
of Theorem 4.4.6, Spanier, 1966).

In the present work, it will be shown that there is such connection for a singular cohomology. Namely, there exists a finite exact
sequence

0 −→ lim
←−

(2n−3) H1
s (Fα,G) −→ · · · −→ lim

←−

(1) Hn−1
s (Fα,G) −→ Hn

s (X,G)

−→ lim
←−

Hn
s (Fα,G) −→ lim

←−

(2) Hn−1
s (Fα,G) −→ · · · −→ lim

←−

(2n−2) H1
s (Fα,G) −→ 0. (2)
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The terms the Alexander cohomology with compact supports and the singular cohomology with compact supports used in the
works (Spanier, 1966; Mdzinarishvili, 1984) do not refer to our problem. Therefore, cohomology theory, in particular the singular
cohomology, for which there is a finite exact sequence (2), is called a cohomology with partially compact supports.

In the present work, using a finite exact sequence (2), it is proved the uniqueness theorem for a cohomology having partially
compact supports on the category of polyhedral pairs. Hence, the uniqueness theorem connects all cohomology theories with
partially compact supports with the singular cohomology theory.

c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Let C∗ = {Cn} be a chain complex of abelian groups Cn ,

C∗ = C0
∂1
←− C1

∂2
←− · · · ←− Cn−1

∂n
←− Cn

∂n+1
←− · · · . (3)

We denote Zn = Ker ∂n , Bn = Im ∂n+1, Hn = Zn/Bn = Hn(C∗).
Let Hom(−,G) be the contravariant functor, where G is an abelian group. Using the chain complex C∗ from

(3) and the functor Hom(−,G), we have a cochain complex C∗ = Hom(C∗,G), where Cn
= Hom(Cn,G) and

δn
: Cn−1

→ Cn . Denote also Zn
= Ker δn+1, Bn

= Im δn , H n
= Zn/Bn

= H n(C∗).

Lemma 1. If C∗ is a free chain complex, then there is an exact sequence

0 −→ Hom(Bn−1,G) −→ Zn
−→ Hom(Hn,G) −→ 0. (4)

Proof. Since C∗ is a free chain complex, Zn and Bn are free abelian groups for n ∈ Z. Consider the exact sequences

0 −→ Zn
in
−→ Cn

jn
−→ Bn−1 −→ 0

and

0 −→ Bn −→ Zn
tm
−→ Hn −→ 0.

Using the above sequences, the functor Hom(−,G), and also Theorems 3.3.2, 3.3.5 and Lemma 1.5.4 [1], we have,
respectively, the exact sequences

0 −→ Hom(Bn−1,G) −→ Hom(Cn,G) −→ Hom(Zn,G) −→ 0, (5)

0 −→ Hom(Hn,G) −→ Hom(Zn,G) −→ Hom(Bn,G) −→ Ext(Hn,G) −→ 0. (6)

The commutative diagram

0 →→ Bn
kn →→ Zn

in →→ Cn

Cn+1

jn+1

↖↖

∂n+1

↗↗ (7)
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