ARTICLE IN PRESS

1889 1929 Available online at www.sciencedirect.com

Transactions of A. Razmadze Mathematical Institute

Transactions of A. Razmadze Mathematical Institute I (IIII)

www.elsevier.com/locate/trmi

Potential operators in modified Morrey spaces defined on Carleson curves

Original Article

I.B. Dadashova^a, C. Aykol^{b,*}, Z. Cakir^b, A. Serbetci^b

^a Baku State University, Baku, Azerbaijan ^b Ankara University, Department of Mathematics, Ankara, Turkey

Received 4 August 2017; received in revised form 26 September 2017; accepted 27 September 2017 Available online xxxx

Abstract

In this paper we study the potential operator I_{Γ}^{α} , 0 < 1 in the modified Morrey space $\widetilde{L}_{p,\lambda}(\Gamma)$ and the spaces $BMO(\Gamma)$ defined on Carleson curves Γ . We prove that for $1 the potential operator <math>I_{\Gamma}^{\alpha}$ is bounded from the modified Morrey space $\widetilde{L}_{p,\lambda}(\Gamma)$ to $\widetilde{L}_{q,\lambda}(\Gamma)$ if and in the case of infinite curve only if $\alpha \leq 1/p - 1/q \leq \alpha/(1 - \lambda)$, and from the spaces $\widetilde{L}_{1,\lambda}(\Gamma)$ to $W\widetilde{L}_{q,\lambda}(\Gamma)$ if and in the case of infinite curve only if $\alpha \leq 1 - \frac{1}{q} \leq \frac{\alpha}{1-\lambda}$. Furthermore, for the limiting case $(1 - \lambda)/\alpha \leq p \leq 1/\alpha$ we show that if Γ is an infinite Carleson curve, then the modified potential operator $\widetilde{T}_{\Gamma}^{\alpha}$ is bounded from $\widetilde{L}_{p,\lambda}(\Gamma)$ to $BMO(\Gamma)$, and if Γ is a finite Carleson curve, then the operator I_{Γ}^{α} is bounded from $\widetilde{L}_{p,\lambda}(\Gamma)$ to $BMO(\Gamma)$.

© 2017 Published by Elsevier B.V. on behalf of Ivane Javakhishvili Tbilisi State University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Carleson curves; Modified Morrey spaces; BMO spaces; Potential operators; Sobolev-Morrey inequality

1. Introduction

Morrey spaces were introduced by C.B. Morrey [1] in 1938 in connection with certain problems in elliptic partial differential equations and calculus of variations (see [2,3]). Later, Morrey spaces found important applications to Navier–Stokes and Schrödinger equations, elliptic problems with discontinuous coefficients and potential theory (see [4–8]).

Let $\Gamma = \{t \in \mathbb{C} : t = t(s), 0 \le s \le l \le \infty\}$ be a rectifiable Jordan curve in the complex plane with arc-length measure v(t) = s, here $l = v\Gamma$ = lengths of Γ .

Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

https://doi.org/10.1016/j.trmi.2017.09.004

Please cite this article in press as: I.B. Dadashova, et al., Potential operators in modified Morrey spaces defined on Carleson curves, Transactions of A. Razmadze Mathematical Institute (2017), https://doi.org/10.1016/j.trmi.2017.09.004.

^{*} Corresponding author. *E-mail addresses:* irada-dadashova@rambler.ru (I.B. Dadashova), Canay.Aykol@science.ankara.edu.tr (C. Aykol), zeyncakir@gmail.com (Z. Cakir), serbetci@ankara.edu.tr (A. Serbetci).

^{2346-8092/© 2017} Published by Elsevier B.V. on behalf of Ivane Javakhishvili Tbilisi State University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ARTICLE IN PRESS

I.B. Dadashova et al. / Transactions of A. Razmadze Mathematical Institute I (IIII)

We denote

$$\Gamma(t,r) = \Gamma \cap B(t,r), \ t \in \Gamma, \ r > 0,$$

where $B(t, r) = \{ z \in \mathbb{C} : |z - t| < r \}.$

A rectifiable Jordan curve Γ is called a Carleson curve (regular curve) if the condition

 $\nu \Gamma(t,r) \le c_0 r$

holds for all $t \in \Gamma$ and r > 0, where the constant $c_0 > 0$ does not depend on t and r.

Definition 1. Let $1 \le p < \infty$, $0 \le \lambda \le 1$, $[r]_1 = \min\{1, r\}$. We denote by $L_{p,\lambda}(\Gamma)$ the Morrey space, and by $L_{p,\lambda}(\Gamma)$ the modified Morrey space, the set of locally integrable functions f on Γ with the finite norms

$$\|f\|_{L_{p,\lambda}(\Gamma)} = \sup_{t \in \Gamma} \sup_{r>0} r^{-\frac{\lambda}{p}} \|f\|_{L_p(\Gamma(t,r))},$$
$$\|f\|_{\widetilde{L}_{p,\lambda}(\Gamma)} = \sup_{t \in \Gamma} \sup_{r>0} r^{-\frac{\lambda}{p}} \|f\|_{L_p(\Gamma(t,r))}$$

respectively.

Note that

$$L_{p,0}(\Gamma) = \widetilde{L}_{p,0}(\Gamma) = L_p(\Gamma),$$

$$\widetilde{L}_{p,\lambda}(\Gamma) \subset L_{p,\lambda}(\Gamma) \cap L_p(\Gamma) \quad \text{and} \quad \max\{\|f\|_{L_{p,\lambda}(\Gamma)}, \|f\|_{L_p(\Gamma)}\} \le \|f\|_{\widetilde{L}_{p,\lambda}(\Gamma)}$$
(1)

and if $\lambda < 0$ or $\lambda > 1$, then $L_{p,\lambda}(\Gamma) = \widetilde{L}_{p,\lambda}(\Gamma) = \Theta$, where Θ is the set of all functions equivalent to 0 on Γ .

We denote by $WL_{p,\lambda}(\Gamma)$ the weak Morrey space, and by $W\widetilde{L}_{p,\lambda}(\Gamma)$ the modified Morrey space, as the set of locally integrable functions f on Γ with finite norms

$$\|f\|_{WL_{p,\lambda}(\Gamma)} = \sup_{\beta>0} \beta \sup_{r>0, t\in\Gamma} \left(r^{-\lambda} \int_{\{\tau\in\Gamma(t,r): |f(\tau)|>\beta\}} d\nu(\tau) \right)^{1/p},$$

$$\|f\|_{W\widetilde{L}_{p,\lambda}(\Gamma)} = \sup_{\beta>0} \beta \sup_{r>0, t\in\Gamma} \left([r]_1^{-\lambda} \int_{\{\tau\in\Gamma(t,r): |f(\tau)|>\beta\}} d\nu(\tau) \right)^{1/p}.$$

Note that

$$WL_p(\Gamma) = WL_{p,0}(\Gamma), \ L_{p,\lambda}(\Gamma) \subset WL_{p,\lambda}(\Gamma) \text{ and } \|f\|_{WL_{p,\lambda}(\Gamma)} \le \|f\|_{L_{p,\lambda}(\Gamma)}.$$

Definition 2. The space of functions with bounded mean oscillation $BMO(\Gamma)$ is defined as the set of locally integrable functions f with finite norm

$$\|f\|_{BMO(\Gamma)} = \sup_{r>0, \ t\in\Gamma} (\nu\Gamma(t,r))^{-1} \int_{\Gamma(t,r)} |f(\tau) - f_{\Gamma(t,r)}| d\nu(\tau) < \infty$$

where

$$f_{\Gamma(t,r)} = (\nu \Gamma(t,r))^{-1} \int_{\Gamma(t,r)} f(\tau) d\nu(\tau).$$

Maximal operators and potential operators in various spaces defined on Carleson curves have been widely studied by many authors (see, for example [9–16]). In Morrey spaces defined on quasimetric measure spaces, in particular Morrey spaces $L_{p,\lambda}(\Gamma)$ defined on Carleson curves N. Samko [16] studied the boundedness of the maximal operator M_{Γ} defined by

$$M_{\Gamma}f(t) = \sup_{t>0} (\nu\Gamma(t,r))^{-1} \int_{\Gamma(t,r)} |f(\tau)| d\nu(\tau)$$

and proved the following:

Please cite this article in press as: I.B. Dadashova, et al., Potential operators in modified Morrey spaces defined on Carleson curves, Transactions of A. Razmadze Mathematical Institute (2017), https://doi.org/10.1016/j.trmi.2017.09.004.

2

Download English Version:

https://daneshyari.com/en/article/8900376

Download Persian Version:

https://daneshyari.com/article/8900376

Daneshyari.com