Transactions of
A. Razmadze

Mathematical Institute

On the Wiener-Hopf factorization of rational matrices
 Vakhtang Lomadze
 Department of Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi 0183, Georgia

Received 14 July 2017; received in revised form 12 September 2017; accepted 13 September 2017
Available online xxxx

Abstract

The Wiener-Hopf factorization theorem for rational matrices is proved with respect to very general contours using purely algebraic method. © 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Rational functions; Matrices; Modules; Vector bundles; Cohomologies

1. Introduction

The Wiener-Hopf factorization of a rational matrix G relative to a contour Γ refers to a decomposition

$$
G=G^{+} D G^{-},
$$

where the factor G^{+}is analytic and regular on the inner domain Ω^{+}of Γ, the factor G^{-}is analytic and regular on the outer domain Ω^{-}, and D is a diagonal matrix of the form

$$
D=\operatorname{diag}\left(s^{n_{1}}, \ldots, s^{n_{r}}\right)
$$

(Here n_{1}, \ldots, n_{r} are integers, which are uniquely determined up to permutation.)
This kind of factorization was initiated by Wiener and Hopf in their famous paper [1], and it is a powerful tool by which one solves singular integral equations and related boundary value problems. There is a vast literature on Wiener-Hopf's factorization and its applications (see [2-4] and the references therein).

The factorization theorem by itself is purely algebraic in nature, and it is the goal of this article to prove it by a purely algebraic method. The goal is also to extend the theorem to a very general situation.

The situation considered is the following: The "inner domain" Ω^{+}and the "outer domain" Ω^{-}are taken to be arbitrary nonempty subsets of the complex projective line covering it, and the "contour" Γ is defined to be $\Omega^{+} \cap \Omega^{-}$.

The development, in fact, will be carried out for the case when the ground field is an arbitrary field \mathbb{F}, not necessarily the complex number field.

[^0]
2. Algebraic preliminaries

Let ξ_{0} and ξ_{1} be two indeterminates, and let \mathbb{P}^{1} be the projective line over \mathbb{F}. The points in \mathbb{P}^{1} are assumed to be the equivalence classes of irreducible homogeneous polynomials in $\mathbb{F}\left[\xi_{0}, \xi_{1}\right]$. (We remind that two such polynomials are equivalent if they differ by a nonzero constant factor.) If p is an irreducible homogeneous polynomial, then the corresponding point is denoted by $[p]$. The degree of a point is the degree of a defining polynomial. One defines the zero point and the infinite point respectively as

$$
0=\left[\xi_{1}\right] \quad \text { and } \quad \infty=\left[\xi_{0}\right] .
$$

The set of finite points, i.e., the set $\mathbb{P}^{1} \backslash\{\infty\}$, is called the affine line and is denoted by \mathbb{A}^{1}.
Remark. Points of degree 1 are of special interest. They are determined by 1 -forms $a_{0} \xi_{1}-a_{1} \xi_{0}$ with $a_{0}, a_{1} \in \mathbb{F}$ such that $\left(a_{0}, a_{1}\right) \neq(0,0)$, and consequently may be identified with equivalence classes in $\mathbb{F}^{2} \backslash\{(0,0)\}$ (i.e., with points of the "classical" projective line).

A rational function is a ratio f / g, where f and $g \neq 0$ are homogeneous polynomials of the same degree. Of special importance are $s=\xi_{1} / \xi_{0}$ and $t=\xi_{0} / \xi_{1}$. Rational functions form a field; we shall denote it by K. It is worth noting that

$$
K=\mathbb{F}(s) \text { and } K=\mathbb{F}(t)
$$

Letting $\operatorname{Spec}(\mathbb{F}[s])($ resp. $\operatorname{Spec}(\mathbb{F}[t])$) denote the set of monic irreducible polynomials in the polynomial ring $\mathbb{F}[s]$ (resp. $\mathbb{F}[t]$), we have canonical bijections

$$
\mathbb{P}^{1} \backslash\{\infty\} \simeq \operatorname{Spec}(\mathbb{F}[s]) \text { and } \mathbb{P}^{1} \backslash\{0\} \simeq \operatorname{Spec}(\mathbb{F}[t])
$$

Given a point x, a (nonzero) rational function $\varphi=f / g$ can be written in the form

$$
\varphi=p^{n} \cdot f_{0} / g_{0}
$$

where p is a defining polynomial of x, f_{0} and g_{0} are homogeneous polynomials prime to p and n is an integer. The integer n is uniquely determined, and one sets

$$
\operatorname{ord}_{x}(\varphi)=n
$$

The function $\operatorname{ord}_{x}: K \backslash\{0\} \rightarrow \mathbb{Z}$ is surjective and satisfies the following two conditions

- $\operatorname{ord}_{x}(\varphi \psi)=\operatorname{ord}_{x}(\varphi)+\operatorname{ord}_{x}(\psi)$,
- $\operatorname{ord}_{x}(\varphi+\psi) \geq \min \left\{\operatorname{ord}_{x}(\varphi), \operatorname{ord}_{x}(\psi)\right\}$.
(This type of functions are called discrete valuations (see Ch. 9 in [5]).)
A nonzero rational function φ is said to be regular at a point x if $\operatorname{ord}(\varphi) \geq 0$. Rational functions regular at x form a ring, denoted by O_{x}. (The zero rational function is regarded to be regular at all points.)

Throughout this article, Ω^{+}and Ω^{-}are two fixed nonempty subsets of \mathbb{P}^{1} that cover the latter:

$$
\mathbb{P}^{1}=\Omega^{+} \cup \Omega^{-}
$$

Choose two points a^{+}and a^{-}that have degree 1 and such that

$$
a^{+} \in \Omega^{+} \backslash \Omega^{-} \text {and } a^{-} \in \Omega^{-} \backslash \Omega^{+} .
$$

(Existence of two such points is assumed.) Define the "contour" Γ by setting

$$
\Gamma=\Omega^{+} \cap \Omega^{-}
$$

Here are a few interesting examples for the case when $\mathbb{F}=\mathbb{C}$.
Examples. (1) $\Omega^{+}=\mathbb{C}, \Omega^{-}=\{\infty\}, \Gamma=\emptyset, a^{+}=0, a^{-}=\infty$.
(2) $\Gamma=\mathbb{C} \backslash\{0\}, \Omega^{+}=\Gamma \cup\{0\}, \Omega^{-}=\Gamma \cup\{\infty\}, a^{+}=0, a^{-}=\infty$.
(3) $\Omega^{+}=\mathbb{C}^{+} \cup \infty, \Omega^{-}=\mathbb{C}^{-} \cup \infty, \Gamma=\mathbb{R} \cup \infty, a^{+}=i, a^{-}=-i$.

The choice of a^{+}and a^{-}is of no particular importance. There certainly exists a linear transformation of \mathbb{P}^{1} that maps a^{+}and a^{-}to 0 and ∞, respectively. Without loss of generality, we therefore make the following assumption.

https://daneshyari.com/en/article/8900381

Download Persian Version:

https://daneshyari.com/article/8900381

Daneshyari.com

[^0]: E-mail address: vakhtang.lomadze@tsu.ge.
 http://dx.doi.org/10.1016/j.trmi.2017.09.001
 2346-8092/© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

