ARTICLE IN PRESS

Available online at www.sciencedirect.com

Transactions of A. Razmadze Mathematical Institute

Transactions of A. Razmadze Mathematical Institute I (IIII)

www.elsevier.com/locate/trmi

Original article

Generalized semi-open and pre-semiopen sets via ideals

Bishwambhar Roy^a,*, Ritu Sen^b

^a Department of Mathematics, Women's Christian College, 6, G. C. Row, Kolkata — 700 026, India ^b Department of Mathematics, Presidency University, Kolkata — 700073, India

Received 15 March 2017; received in revised form 1 August 2017; accepted 10 August 2017 Available online xxxxx

Abstract

In this paper we have introduced a new type of sets termed as μ^* -open sets which unifies semiopen sets, β -open sets and discussed some of its properties. We have also introduced another type of weak open sets termed as \mathcal{I}_{μ} -open sets depending on a GT as well as an ideal on a topological space. Finally the concept of weakly \mathcal{I}_{μ} -open sets are investigated.

© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: μ -open set; Ideal; μ^* -open set; \mathcal{I}_{μ} -open set; Weakly \mathcal{I}_{μ} -open set

1. Introduction

The concept of ideal on topological spaces was studied by Kuratowski [1] and Vaidyanathaswamy [2] which is one of the important areas of research in the branch of mathematics. After them different mathematicians applied the concept of ideals in topological spaces (see [2-8]). In the past few years mathematicians turned their attention towards the generalized open sets (see [8-12] for details). Our aim in this paper is to use the concept of ideals in the generalized topology introduced by A. Császár. We recall some notions defined in [10].

Let expX denote the power set of a non-empty set X. A class $\mu \subseteq expX$ is called a generalized topology [10], (briefly, GT) if $\emptyset \in \mu$ and μ is closed under arbitrary union. The elements of μ are called μ -open sets and the complement of μ -open sets are known as μ -closed sets. A set X with a GT μ on it is known as a generalized topological space (briefly, GTS) and is denoted by (X, μ) . A GT μ is said to be a quasi topology (briefly QT) [17] if $M, M' \in \mu$ implies $M \cap M' \in \mu$. The pair (X, μ) is said to be a QTS if μ is a QT on X.

For any $A \subseteq X$, the generalized μ -closure of A is denoted by $c_{\mu}(A)$ and is defined by $c_{\mu}(A) = \bigcap \{F : F \text{ is } \mu\text{-closed} \text{ and } A \subseteq F\}$, similarly $i_{\mu}(A) = \bigcup \{U : U \subseteq A \text{ and } U \in \mu\}$ (see [10,11]). Throughout the paper μ , λ will always mean GT on the respective sets.

* Corresponding author. *E-mail addresses:* bishwambhar_roy@yahoo.co.in (B. Roy), ritu_sen29@yahoo.co.in (R. Sen). Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

http://dx.doi.org/10.1016/j.trmi.2017.08.003

Please cite this article in press as: B. Roy, R. Sen, Generalized semi-open and pre-semiopen sets via ideals, Transactions of A. Razmadze Mathematical Institute (2017), http://dx.doi.org/10.1016/j.trmi.2017.08.003.

^{2346-8092/© 2017} Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ARTICLE IN PRESS

B. Roy, R. Sen / Transactions of A. Razmadze Mathematical Institute & (

An ideal [1] \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X with the following properties: (i) $A \subseteq B$ and $B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$ (ii) $A \in \mathcal{I}, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$. An ideal \mathcal{I} on a topological space (X, τ) is denoted by (X, τ, \mathcal{I}) and known as an ideal topological space.

2. μ^* -open sets

Definition 2.1. Let μ be a GT on a topological space (X, τ) . A subset A of X is called μ^* -open [13] if $A \subseteq cl(i_{\mu}(A))$.

Theorem 2.2. Let μ be a GT on a topological space (X, τ) . Then A is μ^* -open if and only if there exists a μ -open set U such that $U \subseteq A \subseteq cl(U)$.

Proof. Let A be a μ^* -open set. Then $A \subseteq cl(i_{\mu}(A))$. Let $U = i_{\mu}(A)$. Then U is μ -open and $U \subseteq A \subseteq cl(i_{\mu}(A)) = cl(U)$. Conversely, let there exist a μ -open set U such that $U \subseteq A \subseteq cl(U)$. Then $U \subseteq A \Rightarrow U \subseteq i_{\mu}(A) \Rightarrow cl(U) \subseteq cl(i_{\mu}(A)) \Rightarrow A \subseteq cl(i_{\mu}(A))$. Thus A is μ^* -open.

Remark 2.3. Let μ be a GT on a topological space (X, τ) . If

(i) $\mu = \tau$, then μ^* -open set reduces to semiopen set [14];

(ii) $\mu = PO(X)$, then μ^* -open set reduces to β -open set [15];

(iii) every μ -open set is μ^* -open;

(iv) If λ be any other GT on X with $\mu \subseteq \lambda$, then every μ^* -open set is λ^* -open.

Note 2.4. Let μ be a GT on a topological space (X, τ) . Then the collection of all μ^* -open sets forms a GT on X.

Proof. Clearly \emptyset is a μ^* -open set. Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a family of μ^* -open sets. Then there exist μ -open sets U_{α} such that $U_{\alpha} \subseteq A_{\alpha} \subseteq cl(U_{\alpha})$ for each $\alpha \in \Lambda$. Thus $\cup \{U_{\alpha} : \alpha \in \Lambda\} = U$ (say) $\subseteq \cup \{A_{\alpha} : \alpha \in \Lambda\} \subseteq cl(U)$ where U is μ -open showing that the union of μ^* -open sets is μ^* -open.

Example 2.5. (a) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, c\}, X\}$ and $\mu = \{\emptyset, \{c\}, \{a, c\}\}$. Then μ is a GT on the topological space (X, τ) . It can be checked easily that $\{b, c\}$ is a μ^* -open set which is not a μ -open set.

(b) Let $X = \{a, b, c\}, \mu = \{\emptyset, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then μ is a GT on the topological space (X, τ) . It can be easily verified that $\{a, b\}$ and $\{a, c\}$ are both μ^* -open but their intersection $\{a\}$ is not so.

Theorem 2.6. Let μ be a GT on a topological space (X, τ) and A be a μ^* -open set such that $A \subseteq B \subseteq cl(A)$. Then B is also a μ^* -open set.

Proof. As A is μ^* -open, there exists a μ -open set U such that $U \subseteq A \subseteq cl(U)$. Thus $U \subseteq B$. Also $cl(A) \subseteq cl(U) \Rightarrow B \subseteq cl(U)$. Thus $U \subseteq B \subseteq cl(U)$. Thus B is μ^* -open.

3. \mathcal{I}_{μ} -open sets

Definition 3.1. Let μ be a GT on an ideal topological space (X, τ, \mathcal{I}) . A subset A of X is called \mathcal{I}_{μ} -open if there exists a μ -open set U such that $U \setminus A \in \mathcal{I}$ and $A \setminus cl(U) \in \mathcal{I}$.

If $A \in \mathcal{I}$, then A is an \mathcal{I}_{μ} -open set and also by Theorem 2.2, every μ^* -open set (hence every μ -open set) is \mathcal{I}_{μ} -open for any ideal \mathcal{I} on X.

Example 3.2. (a) Let $X = \{a, b, c\}, \mu = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}, \tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then μ is a GT on the ideal topological space (X, τ, \mathcal{I}) . It can be verified that $\{b\}$ is \mathcal{I}_{μ} -open but not μ^* -open.

Please cite this article in press as: B. Roy, R. Sen, Generalized semi-open and pre-semiopen sets via ideals, Transactions of A. Razmadze Mathematical Institute (2017), http://dx.doi.org/10.1016/j.trmi.2017.08.003.

2

Download English Version:

https://daneshyari.com/en/article/8900385

Download Persian Version:

https://daneshyari.com/article/8900385

Daneshyari.com