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Abstract

In the work by analysis of one-dimensional unsteady flows, based on the fundamental law of conservation with application of
Fourier series is shown that in the presence of periodic, steady pulsations along the flow, the main frequency as well as all higher
frequencies remain constant and only the amplitude of oscillations is changed that is in full agreement with the results of analysis
of more complex three-dimensional flows. Thus, is confirmed the validity of the principle of conservation of frequencies or time
scale along the flow. So, is obtained very interesting result for turbulence problem solution.
c⃝ 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC
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1. Introduction

Integrating the Navier–Stokes differential equation, Osborne Reynolds admitted that:

∇F = ∇
(
F

)
. (1.1)

In the work [1] was shown, that one of the main reasons of the Reynolds problem arising is this assumption.
If we have an arbitrary periodic function:

F =
1
τ0

∫ τ0

0
F (x, y, z, t) dt. (1.2)

The following relations are valid:

∇F = ∇
(
F

)
+

F
τ0

∇τ0 = ∇
(
F

)
− F A. (1.3)

∇2 F = ∇
2 (

F
)
− 2A

[
∇

(
F

)]
− F (∇ A) + F A2, (1.4)

where-τO is the duration of oscillation. A = (1/ f ) grad ( f ) = grad (ln f ) = −grad (ln τ0).
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Integrating the differential equations of Navier–Stokes by taking in account (1.2)–(1.4), are obtained differential
equations, that differ from the Reynolds equation. At the same time, the Reynolds equations express conservation laws
for integral flows and they do not cause doubt. Consequently, the presence of two different systems makes it possible
to obtain very important additional information on the turbulence problem. One of these results is the principle of
conservation of frequencies (or time scales) along the flow.

In this paper, we prove what has been said on the example of a one-dimensional nonstationary periodic flow.
From acoustic theory it is well known that at propagation of acoustic waves, pressure fluctuation period and

character at various locations of the perturbation region are qualitatively identical [2,3]. With increasing of distance
from the source of vibration the amplitude of perturbations changes due to dissipation at perturbations spreading in a
large space (in the case of spherical waves), however, the period of oscillation at this is not changing. Therefore, audio
signals are not distorted, despite that they become weaker. In terms of acoustics theory, mathematically this would be
easily explained, since perturbations that are propagating with the constant speed C should create the same pattern
in different locations of space with shift in time x/C (see solutions of wave equations). Thus, we can say that for the
case of acoustic disturbances, the preservation of oscillation frequency is observed. However, let us put the question
of whether or not to preserve as constant the oscillation frequency along the flow, if we have arbitrary, strong periodic
disturbances? The theory of acoustic waves in this issue does not help us, because, at significant perturbations, the
wave propagation velocity is not constant due to its dependence on the changing of the environment state parameters.

However, as will be shown below, if in the one-dimensional flow are propagated periodic waves of arbitrary shape,
the frequency of these oscillations in arbitrary cross section also will be the same. In other words, we show that
conservation of frequency along certain lines is a property not only of acoustic disturbances, but also of arbitrary
non-stationary periodic processes. Starting from simple examples, with the transition to a more general problem, we
show that this property is a common feature of all periodic oscillatory processes. Therefore, this feature would be
called as principle of conservation of frequencies (or time scales) along the vector of substance that is subject of
periodic fluctuations.

2. Basic part

For obviousness, let us assume that in the straight channel receives periodic stream. If in the initial section of the
channel we install the pressure sensor, it will register the oscillation process with the period of τ0 (Fig. 1, line 1) or
with the frequency f = 1/τ0 = ω/2π . For these processes, there is a conventional, minimum angular velocity that
will be determined from the equation ω = 2π f = 2π/τ0.

The sensor located in a certain distance from the entrance section will also detect a certain periodic process with
interval τx , and the perturbation amplitude will be relatively less (line 2). But third sensor that is located very far from
the entrance, almost will not register vibrations due to dissipation and smoothing of the waves, the flow will gradually
make stationary character (line 3).

We will show that, in arbitrary section of one-dimensional periodic flow, the oscillation period of the pulsating flow
parameters must be the same not only for small but also for any perturbations (τ0 = τx = idem). In other words, in
any section, the period of the vibration and main angular velocity will be the same

∂ω

∂x
= 0, (2.1)

∂τx

∂x
= 0 (2.2)

to confirm the above mentioned, let us consider the instantaneous value of mass flow in an arbitrary cross-section
of flow G = ρU F . The instantaneous specific mass flow would be written as the sum of two functions, one of that
depends on the coordinate x and the other is a periodic function, (and dependent on x and t)

g = ρU = η (x) + ϕ (x, t) , (2.3)

thus, a periodic function is possible to express as a Fourier series [4,5]

ϕ (x, τ ) =

∑
i=1,∞

[
a(x)i cos (iωt) + b(x)i sin (iωt)

]
, (2.4)
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