

Available online at www.sciencedirect.com

Transactions of A. Razmadze Mathematical Institute

Transactions of A. Razmadze Mathematical Institute 171 (2017) 238-251

www.elsevier.com/locate/trmi

Original article

Higher-order commutators of parametrized Littlewood–Paley operators on Herz spaces with variable exponent

Wang Hongbin^a,*, Wu Yihong^b

^a School of Science, Shandong University of Technology, Zibo 255049, China ^b Department of Recruitment and Employment, Zibo Normal College, Zibo 255130, China

Received 21 September 2016; received in revised form 5 February 2017; accepted 12 March 2017 Available online 18 April 2017

Abstract

Let $\Omega \in L^2(S^{n-1})$ be a homogeneous function of degree zero and *b* be a BMO or Lipschitz function. In this paper, we obtain some boundedness of the parametrized Littlewood–Paley operators and their high-order commutators on Herz spaces with variable exponent.

© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Herz space; Variable exponent; Commutator; Parametrized area integral; Parametrized Littlewood–Paley g_{λ}^{*} function

1. Introduction

The theory of function spaces with variable exponent has been extensively studied by researchers since the work of Kováčik and Rákosník [1] appearing in 1991. In [2–5] and [6], the authors proved the boundedness of some integral operators on variable L^p spaces.

Given an open set $E \subset \mathbb{R}^n$, and a measurable function $p(\cdot) : E \longrightarrow [1, \infty)$, $L^{p(\cdot)}(E)$ denotes the set of measurable functions f on E such that for some $\lambda > 0$,

$$\int_E \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx < \infty.$$

This set becomes a Banach function space when equipped with the Luxemburg-Nakano norm

$$\|f\|_{L^{p(\cdot)}(E)} = \inf\left\{\lambda > 0: \int_{E} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx \le 1\right\}.$$

* Corresponding author. *E-mail addresses:* wanghb@sdut.edu.cn (H. Wang), wfapple123456@163.com (Y. Wu). Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

http://dx.doi.org/10.1016/j.trmi.2017.03.002

2346-8092/© 2017 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

These spaces are referred to as variable L^p spaces, since they generalized the standard L^p spaces: if p(x) = p is constant, then $L^{p(\cdot)}(E)$ is isometrically isomorphic to $L^p(E)$.

The space $L^{p(\cdot)}_{loc}(E)$ is defined by

$$L_{\text{loc}}^{p(\cdot)}(E) := \{ f : f \in L^{p(\cdot)}(F) \text{ for all compact subsets } F \subset E \}.$$

Define $\mathcal{P}(E)$ to be the set of $p(\cdot): E \longrightarrow [1, \infty)$ such that

$$p^- = \operatorname{ess\,inf}\{p(x) : x \in E\} > 1, \quad p^+ = \operatorname{ess\,sup}\{p(x) : x \in E\} < \infty.$$

Denote p'(x) = p(x)/(p(x) - 1).

For $f \in L^1_{loc}(\mathbb{R}^n)$, the Hardy–Littlewood maximal operator is defined by

$$Mf(x) = \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| dy,$$

where $B_r(x) = \{y \in \mathbb{R}^n : |x - y| < r\}$. Let $\mathcal{B}(\mathbb{R}^n)$ be the set of $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ such that the Hardy–Littlewood maximal operator *M* is bounded on $L^{p(\cdot)}(\mathbb{R}^n)$. In addition, we denote the Lebesgue measure and the characteristic function of a measurable set $A \subset \mathbb{R}^n$ by |A| and χ_A , respectively.

In variable L^p spaces there are some important lemmas as follows.

Lemma 1.1. If $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ and satisfies

$$|p(x) - p(y)| \le \frac{C}{-\log(|x - y|)}, \quad |x - y| \le 1/2$$
(1.1)

and

$$|p(x) - p(y)| \le \frac{C}{\log(|x| + e)}, \quad |y| \ge |x|,$$
(1.2)

then $p(\cdot) \in \mathcal{B}(\mathbb{R}^n)$, that is the Hardy–Littlewood maximal operator M is bounded on $L^{p(\cdot)}(\mathbb{R}^n)$.

Lemma 1.2 ([1]). Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$. If $f \in L^{p(\cdot)}(\mathbb{R}^n)$ and $g \in L^{p'(\cdot)}(\mathbb{R}^n)$, then fg is integrable on \mathbb{R}^n and

$$\int_{\mathbb{R}^n} |f(x)g(x)| dx \leq r_p \|f\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|g\|_{L^{p'(\cdot)}(\mathbb{R}^n)},$$

where

 $r_p = 1 + 1/p^- - 1/p^+.$

This inequality is called the generalized Hölder inequality with respect to the variable L^p spaces.

Lemma 1.3 ([4]). Let $q(\cdot) \in \mathcal{B}(\mathbb{R}^n)$. Then there exists a positive constant C such that for all balls B in \mathbb{R}^n and all measurable subsets $S \subset B$,

$$\frac{\|\chi_B\|_{L^{q(\cdot)}(\mathbb{R}^n)}}{\|\chi_S\|_{L^{q(\cdot)}(\mathbb{R}^n)}} \leq C\frac{|B|}{|S|}, \quad \frac{\|\chi_S\|_{L^{q(\cdot)}(\mathbb{R}^n)}}{\|\chi_B\|_{L^{q(\cdot)}(\mathbb{R}^n)}} \leq C\left(\frac{|S|}{|B|}\right)^{\delta_1} and \frac{\|\chi_S\|_{L^{q'(\cdot)}(\mathbb{R}^n)}}{\|\chi_B\|_{L^{q'(\cdot)}(\mathbb{R}^n)}} \leq C\left(\frac{|S|}{|B|}\right)^{\delta_2},$$

where δ_1, δ_2 are constants with $0 < \delta_1, \delta_2 < 1$.

Throughout this paper δ_1 and δ_2 are the same as in Lemma 1.3.

Lemma 1.4 ([4]). Suppose $q(\cdot) \in \mathcal{B}(\mathbb{R}^n)$. Then there exists a constant C > 0 such that for all balls B in \mathbb{R}^n ,

$$\frac{1}{|B|} \|\chi_B\|_{L^{q(\cdot)}(\mathbb{R}^n)} \|\chi_B\|_{L^{q'(\cdot)}(\mathbb{R}^n)} \leq C.$$

Next we recall the definition of the Herz-type spaces with variable exponent. Let $B_k = \{x \in \mathbb{R}^n : |x| \le 2^k\}$ and $A_k = B_k \setminus B_{k-1}$ for $k \in \mathbb{Z}$. Denote by \mathbb{Z}_+ and \mathbb{N} the sets of all positive and non-negative integers, $\chi_k = \chi_{A_k}$ for $k \in \mathbb{Z}$, $\tilde{\chi}_k = \chi_k$ if $k \in \mathbb{Z}_+$ and $\tilde{\chi}_0 = \chi_{B_0}$.

Download English Version:

https://daneshyari.com/en/article/8900428

Download Persian Version:

https://daneshyari.com/article/8900428

Daneshyari.com