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Abstract

Our aim is to establish sharp weighted bounds for the Hilbert transform of odd and even functions in terms of the mixed type
characteristics of weights. These bounds involve A p and A∞ type characteristics. As a consequence, we obtain weighted bounds
in terms of so-called Andersen–Muckenhoupt type characteristics.
c⃝ 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this paper, we investigate sharp weighted bounds, involving Ap and A∞ characteristics of weights, for
the Hilbert transform of odd and even functions. Following general results we derive these sharp weighted Ap
bounds in terms of so-called Andersen-Muckenhoupt characteristics. Let X and Y be two Banach spaces. Given a
bounded operator T : X → Y , we denote the operator norm by ∥T ∥B(X,Y ) which is defined in the standard way
i.e. ∥T ∥B(X,Y ) = sup∥ f ∥X ≤1 ∥T f ∥Y . If X = Y we use the symbol ∥T ∥B(X).

A non-negative locally integrable function (i.e. a weight function) w defined on Rn is said to satisfy the Ap(Rn)

condition (w ∈ Ap(Rn)) for 1 < p < ∞ if

∥w∥Ap(Rn) := sup
Q


1

|Q|


Q
w(x)dx


1

|Q|


Q
w(x)1−p′

dx

p−1

< ∞,

where p′
=

p
p−1 and supremum is taken over all cubes Q in Rn with sides parallel to the coordinate axes. We call

∥w∥Ap(Rn) the Ap characteristic of w.
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In 1972, B. Muckenhoupt [1] showed that ifw ∈ Ap(Rn), where 1 < p < ∞, then the Hardy–Littlewood maximal
operator

M f (x) = sup
x∈Q

1
|Q|


Q

| f (y)|dy

is bounded in L p
w(Rn). S. Buckley [2] investigated the sharp Ap bound for the operator M . In particular, he established

the inequality

∥M∥L p
w(Rn) ≤ C∥w∥

1
p−1
Ap(Rn)

, 1 < p < ∞. (1.1)

Moreover, he showed that the exponent 1
p−1 is best possible in the sense that we cannot replace ∥w∥

1
p−1
Ap

by ψ(∥w∥Ap )

for any positive non-decreasing function ψ growing slowly than x
1

p−1 . From here it follows that for any λ > 0,

sup
w∈Ap

∥M∥L p
w

∥w∥

1
p−1 −λ

Ap

= ∞.

Let H be the Hilbert transform given by

(H f )(x) = p.v.
1
π


∞

−∞

f (t)

x − t
dt, x ∈ R.

In 1973 R. Hunt, B. Muckenhoupt and R. L. Wheeden [3] solved the one-weight problem for the Hilbert transform in
terms of Muckenhoupt condition. In particular, they established the inequality

∥H f ∥L p
w(R) ≤ cp∥w∥

β

Ap(R)∥ f ∥L p
w(R) (1.2)

for some positive constant β and some constant cp depending on p. S. Petermichl showed that the value of the
exponent β = max{1, p′/p} in (1.2) is sharp. In particular, the following statement holds (see [4] for p = 2, [5] for
p ≠ 2):

Theorem A. Let 1 < p < ∞ and let w be a weight function on R. Then there is a positive constant cp depending
only on p such that

∥H∥B(L p
w)

≤ cp∥w∥
β

Ap(R), (1.3)

where β = max


1, p′

p


. Moreover, the exponent in (1.3) is sharp.

We say that w ∈ A∞(Rn) if w ∈ Ap(R) for some p > 1. In what follows we will use the symbol ∥ρ∥A∞
for the

A∞ characteristic of a weight function ρ:

∥ρ∥A∞
= sup

I

1
ρ(I )


I

M(ρχI )(x)dx .

This characteristic appeared first in the papers by Fiji [6] and Wilson [7,8] and is lower than that the one introduced
by Hruščev [9]:

[ρ]A∞
= sup

I


1
|I |


I
ρ(x)dx


exp


1
|I |


I

log ρ−1(x)dx


.

In 2012, Hytönen, Perez and Rela [10] improved Buckley’s result and obtained a sharp weighted bound involving
A∞ constant:

∥M∥B(L p
w)

≤ cn


1

p − 1
∥w∥Ap∥σ∥A∞

1/p

, 1 < p < ∞, σ = w1−p′

.
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