## **ARTICLE IN PRESS**



Available online at www.sciencedirect.com



Transactions of A. Razmadze Mathematical Institute

Transactions of A. Razmadze Mathematical Institute I (IIII)

www.elsevier.com/locate/trmi

Original article

# Sharp weighted bounds for the Hilbert transform of odd and even functions

Jérôme Gilles<sup>a,\*</sup>, Alexander Meskhi<sup>b,c</sup>

<sup>a</sup> Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, United States
 <sup>b</sup> A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University, 6., Tamarashvili Str. 0177 Tbilisi, Georgia
 <sup>c</sup> Department of Mathematics, Faculty of Informatics and Control Systems, Georgian Technical University, 77, Kostava St., Tbilisi, Georgia

Received 20 May 2016; received in revised form 13 July 2016; accepted 14 July 2016

#### Abstract

Our aim is to establish sharp weighted bounds for the Hilbert transform of odd and even functions in terms of the mixed type characteristics of weights. These bounds involve  $A_p$  and  $A_\infty$  type characteristics. As a consequence, we obtain weighted bounds in terms of so-called Andersen–Muckenhoupt type characteristics.

© 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Hilbert transform; Sharp weighted bound; One-weight inequality

#### 1. Introduction

In this paper, we investigate sharp weighted bounds, involving  $A_p$  and  $A_{\infty}$  characteristics of weights, for the Hilbert transform of odd and even functions. Following general results we derive these sharp weighted  $A_p$ bounds in terms of so-called Andersen-Muckenhoupt characteristics. Let X and Y be two Banach spaces. Given a bounded operator  $T : X \to Y$ , we denote the operator norm by  $||T||_{\mathcal{B}(X,Y)}$  which is defined in the standard way i.e.  $||T||_{\mathcal{B}(X,Y)} = \sup_{||f||_X \le 1} ||Tf||_Y$ . If X = Y we use the symbol  $||T||_{\mathcal{B}(X)}$ .

A non-negative locally integrable function (i.e. a weight function) w defined on  $\mathbb{R}^n$  is said to satisfy the  $A_p(\mathbb{R}^n)$  condition ( $w \in A_p(\mathbb{R}^n)$ ) for 1 if

$$\|w\|_{A_p(\mathbb{R}^n)} \coloneqq \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w(x) dx\right) \left(\frac{1}{|Q|} \int_{Q} w(x)^{1-p'} dx\right)^{p-1} < \infty$$

where  $p' = \frac{p}{p-1}$  and supremum is taken over all cubes Q in  $\mathbb{R}^n$  with sides parallel to the coordinate axes. We call  $||w||_{A_p(\mathbb{R}^n)}$  the  $A_p$  characteristic of w.

\* Corresponding author.

E-mail addresses: jgilles@mail.sdsu.edu (J. Gilles), meskhi@rmi.ge (A. Meskhi).

Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

http://dx.doi.org/10.1016/j.trmi.2016.07.005

<sup>2346-8092/© 2016</sup> Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: J. Gilles, A. Meskhi, Sharp weighted bounds for the Hilbert transform of odd and even functions., Transactions of A. Razmadze Mathematical Institute (2016), http://dx.doi.org/10.1016/j.trmi.2016.07.005

### ARTICLE IN PRESS

#### J. Gilles, A. Meskhi / Transactions of A. Razmadze Mathematical Institute 🛚 ( 🎟 🖬 )

In 1972, B. Muckenhoupt [1] showed that if  $w \in A_p(\mathbb{R}^n)$ , where 1 , then the Hardy–Littlewood maximal operator

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy$$

is bounded in  $L_w^p(\mathbb{R}^n)$ . S. Buckley [2] investigated the sharp  $A_p$  bound for the operator M. In particular, he established the inequality

$$\|M\|_{L^{p}_{w}(\mathbb{R}^{n})} \leq C \|w\|_{A_{p}(\mathbb{R}^{n})}^{\frac{1}{p-1}}, \quad 1 
(1.1)$$

Moreover, he showed that the exponent  $\frac{1}{p-1}$  is best possible in the sense that we cannot replace  $||w||_{A_p}^{\frac{1}{p-1}}$  by  $\psi(||w||_{A_p})$  for any positive non-decreasing function  $\psi$  growing slowly than  $x^{\frac{1}{p-1}}$ . From here it follows that for any  $\lambda > 0$ ,

$$\sup_{w\in A_p}\frac{\|M\|_{L^p_w}}{\|w\|_{A_p}^{\frac{1}{p-1}-\lambda}}=\infty.$$

Let H be the Hilbert transform given by

$$(Hf)(x) = p.v.\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(t)}{x-t} dt, \quad x \in \mathbb{R}$$

In 1973 R. Hunt, B. Muckenhoupt and R. L. Wheeden [3] solved the one-weight problem for the Hilbert transform in terms of Muckenhoupt condition. In particular, they established the inequality

$$\|Hf\|_{L^{p}_{w}(\mathbb{R})} \leq c_{p} \|w\|^{\beta}_{A_{p}(\mathbb{R})} \|f\|_{L^{p}_{w}(\mathbb{R})}$$
(1.2)

for some positive constant  $\beta$  and some constant  $c_p$  depending on p. S. Petermichl showed that the value of the exponent  $\beta = \max\{1, p'/p\}$  in (1.2) is sharp. In particular, the following statement holds (see [4] for p = 2, [5] for  $p \neq 2$ ):

**Theorem A.** Let  $1 and let w be a weight function on <math>\mathbb{R}$ . Then there is a positive constant  $c_p$  depending only on p such that

$$\|H\|_{\mathcal{B}(L^{p}_{w})} \le c_{p} \|w\|^{\beta}_{A_{p}(\mathbb{R})},$$
(1.3)

where  $\beta = \max\left\{1, \frac{p'}{p}\right\}$ . Moreover, the exponent in (1.3) is sharp.

We say that  $w \in A_{\infty}(\mathbb{R}^n)$  if  $w \in A_p(\mathbb{R})$  for some p > 1. In what follows we will use the symbol  $\|\rho\|_{A_{\infty}}$  for the  $A_{\infty}$  characteristic of a weight function  $\rho$ :

$$\|\rho\|_{A_{\infty}} = \sup_{I} \frac{1}{\rho(I)} \int_{I} M(\rho \chi_{I})(x) dx.$$

This characteristic appeared first in the papers by Fiji [6] and Wilson [7,8] and is lower than that the one introduced by Hruščev [9]:

$$[\rho]_{A_{\infty}} = \sup_{I} \left( \frac{1}{|I|} \int_{I} \rho(x) dx \right) \exp\left( \frac{1}{|I|} \int_{I} \log \rho^{-1}(x) dx \right).$$

In 2012, Hytönen, Perez and Rela [10] improved Buckley's result and obtained a sharp weighted bound involving  $A_{\infty}$  constant:

$$\|M\|_{\mathcal{B}(L^p_w)} \le c_n \left(rac{1}{p-1} \|w\|_{A_p} \|\sigma\|_{A_\infty}
ight)^{1/p}, \quad 1$$

Please cite this article in press as: J. Gilles, A. Meskhi, Sharp weighted bounds for the Hilbert transform of odd and even functions., Transactions of A. Razmadze Mathematical Institute (2016), http://dx.doi.org/10.1016/j.trmi.2016.07.005

2

Download English Version:

# https://daneshyari.com/en/article/8900435

Download Persian Version:

https://daneshyari.com/article/8900435

Daneshyari.com