

Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

Restricted growth function patterns and statistics $\stackrel{\text{\tiny{$\Xi$}}}{\to}$

霐

APPLIED MATHEMATICS

Lindsey R. Campbell^a, Samantha Dahlberg^b, Robert Dorward^c, Jonathan Gerhard^d, Thomas Grubb^e, Carlin Purcell^f, Bruce E. Sagan^{g,*}

^a Department of Procurement, Detroit Diesel Corporation, Detroit, MI 48239, USA ^b Department of Mathematics, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada ^c Department of Mathematics, Oberlin College, Oberlin, OH 44074, USA ^d Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA ^e Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA 420 W. Smith St. Apt. 526, Kent, WA 98032, USA ^g Department of Mathematics, Michigan State University, East Lansing, MI 48824,

ARTICLE INFO

Article history: Received 9 November 2017 Received in revised form 2 May 2018 Accepted 2 May 2018 Available online xxxx

MSC: 05A05 05A15 05A18 05A19

USA

Keywords: Generating function Gaussian polynomial lb ls

ABSTRACT

A restricted growth function (RGF) of length n is a sequence $w = w_1 w_2 \dots w_n$ of positive integers such that $w_1 = 1$ and $w_i \leq 1 + \max\{w_1, \ldots, w_{i-1}\}$ for $i \geq 2$. RGFs are of interest because they are in natural bijection with set partitions of $\{1, 2, \ldots, n\}$. An RGF w avoids another RGF v if there is no subword of w which standardizes to v. We study the generating functions $\sum_{w \in R_n(v)} q^{\operatorname{st}(w)}$ where $R_n(v)$ is the set of RGFs of length n which avoid v and st(w) is any of the four fundamental statistics on RGFs defined by Wachs and White. These generating functions exhibit interesting connections with multiset permutations, integer partitions,

☆ All authors' research partially supported by NSA grant H98230-13-1-0259, by NSF grant DMS-1062817, and by the SURIEM REU at Michigan State University.

* Corresponding author.

E-mail addresses: Lindsey.Reppuhn11@gmail.com (L.R. Campbell), samadahl@math.ubc.ca

(S. Dahlberg), bobbydorward@gmail.com (R. Dorward), jgerhard@umich.edu (J. Gerhard),

https://doi.org/10.1016/j.aam.2018.05.002 0196-8858/© 2018 Elsevier Inc. All rights reserved.

tgrubb@ucsd.edu (T. Grubb), carlinpurcell@gmail.com (C. Purcell), sagan@math.msu.edu (B.E. Sagan).

Noncrossing partition Nonnesting partition Pattern rb rs Restricted growth function Partition Statistic Two-colored Motzkin path and two-colored Motzkin paths, as well as noncrossing and nonnesting set partitions.

 $\ensuremath{\textcircled{O}}$ 2018 Elsevier Inc. All rights reserved.

1. Introduction

Recently, there has been a flurry of activity looking at the distribution of statistics over pattern classes in various objects. For example, see [4,5,7,9,11,12,14]. There are two notions of pattern containment for set partitions, one obtained by standardizing a subpartition and one obtained by standardizing a subword of the corresponding restricted growth function. In [6], the present authors studied the distribution of four fundamental statistics of Wachs and White [25] over avoidance classes using the first definition. The purpose of this paper is to carry out an analogous investigation for the second.

Let us begin by defining our terms. Consider a finite set S. A set partition σ of S is a family of nonempty subsets B_1, \ldots, B_k whose disjoint union is S, written $\sigma = B_1/\ldots/B_k \vdash S$. The B_i are called *blocks* and we will usually suppress the set braces and commas in each block for readability. We will be particularly interested in set partitions of $[n] := \{1, 2, \ldots, n\}$ and will use the notation

$$\Pi_n = \{ \sigma : \sigma \vdash [n] \}.$$

To illustrate $\sigma = 145/2/3 \vdash [5]$. If $T \subseteq S$ and $\sigma = B_1/\ldots/B_k \vdash S$ then there is a corresponding subpartition $\sigma' \vdash T$ whose blocks are the nonempty intersections $B_i \cap T$. To continue our example, if $T = \{2, 4, 5\}$ then we get the subpartition $\sigma' = 2/45 \vdash T$.

The concept of pattern is built on the standardization map. Let O be an object with labels which are positive integers. The *standardization* of O, $\operatorname{stan}(O)$, is obtained by replacing all occurrences of the smallest label in O by 1, all occurrences of the next smallest by 2, and so on. Say that $\sigma \vdash [n]$ contains π as a pattern if it contains a subpartition σ' such that $\operatorname{stan}(\sigma') = \pi$. In this case σ' is called an *occurrence* or *copy* of π in σ . Otherwise, we say that σ avoids π and let

$$\Pi_n(\pi) = \{ \sigma \in \Pi_n : \sigma \text{ avoids } \pi \}.$$

In our running example, $\sigma = 145/2/3$ contains $\pi = 1/23$ since $\operatorname{stan}(2/45) = 1/23$. But σ avoids 12/3 because if one takes any two elements from the first block of σ then it is impossible to find an element from another block bigger than both of them. Klazar [16–18] was the first to study this approach to set partition patterns. For more recent work, see the paper of Bloom and Saracino [3].

Download English Version:

https://daneshyari.com/en/article/8900453

Download Persian Version:

https://daneshyari.com/article/8900453

Daneshyari.com