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A restricted growth function (RGF) of length n is a sequence 
w = w1w2 . . . wn of positive integers such that w1 = 1 and 
wi ≤ 1 + max{w1, . . . , wi−1} for i ≥ 2. RGFs are of interest 
because they are in natural bijection with set partitions of 
{1, 2, . . . , n}. An RGF w avoids another RGF v if there is 
no subword of w which standardizes to v. We study the 
generating functions 

∑
w∈Rn(v) q

st(w) where Rn(v) is the set 
of RGFs of length n which avoid v and st(w) is any of 
the four fundamental statistics on RGFs defined by Wachs 
and White. These generating functions exhibit interesting 
connections with multiset permutations, integer partitions, 
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and two-colored Motzkin paths, as well as noncrossing and 
nonnesting set partitions.
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1. Introduction

Recently, there has been a flurry of activity looking at the distribution of statistics 
over pattern classes in various objects. For example, see [4,5,7,9,11,12,14]. There are 
two notions of pattern containment for set partitions, one obtained by standardizing a 
subpartition and one obtained by standardizing a subword of the corresponding restricted 
growth function. In [6], the present authors studied the distribution of four fundamental 
statistics of Wachs and White [25] over avoidance classes using the first definition. The 
purpose of this paper is to carry out an analogous investigation for the second.

Let us begin by defining our terms. Consider a finite set S. A set partition σ of S

is a family of nonempty subsets B1, . . . , Bk whose disjoint union is S, written σ =
B1/ . . . /Bk � S. The Bi are called blocks and we will usually suppress the set braces and 
commas in each block for readability. We will be particularly interested in set partitions 
of [n] := {1, 2, . . . , n} and will use the notation

Πn = {σ : σ � [n]}.

To illustrate σ = 145/2/3 � [5]. If T ⊆ S and σ = B1/ . . . /Bk � S then there is a 
corresponding subpartition σ′ � T whose blocks are the nonempty intersections Bi ∩ T . 
To continue our example, if T = {2, 4, 5} then we get the subpartition σ′ = 2/45 � T .

The concept of pattern is built on the standardization map. Let O be an object with 
labels which are positive integers. The standardization of O, stan(O), is obtained by 
replacing all occurrences of the smallest label in O by 1, all occurrences of the next 
smallest by 2, and so on. Say that σ � [n] contains π as a pattern if it contains a 
subpartition σ′ such that stan(σ′) = π. In this case σ′ is called an occurrence or copy
of π in σ. Otherwise, we say that σ avoids π and let

Πn(π) = {σ ∈ Πn : σ avoids π}.

In our running example, σ = 145/2/3 contains π = 1/23 since stan(2/45) = 1/23. But 
σ avoids 12/3 because if one takes any two elements from the first block of σ then it is 
impossible to find an element from another block bigger than both of them. Klazar [16–18]
was the first to study this approach to set partition patterns. For more recent work, see 
the paper of Bloom and Saracino [3].
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