

Contents lists available at ScienceDirect

Advances in Applied Mathematics

www.elsevier.com/locate/yaama

Simplicial networks and effective resistance

Woong Kook, Kang-Ju Lee*

Department of Mathematical Sciences, Seoul National University, Seoul, Republic of Korea

ARTICLE INFO

Article history: Received 18 March 2017 Received in revised form 24 May 2018 Accepted 25 May 2018 Available online xxxx

MSC: primary 05E45 secondary 05C50, 35J05, 94C15

Keywords: Effective resistance Simplicial network Combinatorial Laplacians Combinatorial Hodge theory High-dimensional tree-numbers

ABSTRACT

We introduce the notion of effective resistance for a simplicial network (X, R) where X is a simplicial complex and R is a set of resistances for the top simplices, and prove two formulas generalizing previous results concerning effective resistance for resistor networks. Our approach, based on combinatorial Hodge theory, is to assign a unique harmonic class to a current generator σ , an extra top-dimensional simplex to be attached to X. We will show that the harmonic class gives rise to the current I_{σ} and the voltage V_{σ} for $X \cup \sigma$, satisfying Thomson's energy-minimizing principle and Ohm's law for simplicial networks.

The effective resistance R_{σ} of a current generator σ shall be defined as a ratio of the σ -components of V_{σ} and I_{σ} . By introducing *potential* for voltage vectors, we present a formula for R_{σ} via the inverse of the weighted combinatorial Laplacian of X in codimension one. We also derive a formula for R_{σ} via weighted high-dimensional tree-numbers for X, providing a combinatorial interpretation for R_{σ} . As an application, we generalize Foster's Theorem, and discuss various highdimensional examples.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

 $\label{eq:https://doi.org/10.1016/j.aam.2018.05.004 \\ 0196-8858 @ 2018 Elsevier Inc. All rights reserved.$

霐

APPLIED MATHEMATICS

E-mail addresses: woongkook@snu.ac.kr (W. Kook), leekj0706@snu.ac.kr (K.-J. Lee).

1. Introduction

A simplicial network (X, R) consists of a simplicial complex X of dimension d (> 0)and a set R of positive resistances for the d-dimensional simplices of X. Additional topological conditions for X will be assumed later as needed. A current generator σ is a d-dimensional simplex that is attached to X resulting in a (cell) complex $Y = X \cup \sigma$. The purpose of this paper is to introduce the notion of effective resistance R_{σ} of a current generator σ , and present its formulas and applications. Simplicial networks are a generalization of resistor networks, and the current work aims to extend classical results (see e.g. [15,19]) concerning effective resistance for resistor networks.

Let us outline our approach to R_{σ} . Suppose a nonzero real number i_{σ} is assigned to a current generator σ . We will associate a unique cycle I_{σ} in the chain group $C_d(Y; \mathbb{R})$, which we call the *current vector* induced by i_{σ} , as follows. Attach σ to an *acyclization* $\mathcal{A}(X)$ of X (see Section 2) to form a complex Z with rank 1 homology group in dimension d (see Section 3 for the definition of Z). By combinatorial Hodge theory [9], there is a unique harmonic class for Z determined by i_{σ} . This harmonic class is the desired I_{σ} when every element in R equals 1. Otherwise, a similar argument using a weighted chain complex for Z will produce I_{σ} (see Section 3.2). As we shall see, the *energy-minimizing* property of a harmonic class is a high-dimensional analogue of Thomson's Principle for currents in a resistor network. Also, we will define a voltage vector $V_{\sigma} \in C_d(Y; \mathbb{R})$ by requiring Ohm's law [4] and the orthogonality of current and voltage vectors. In short, we have the current I_{σ} and voltage V_{σ} vectors for $Y = X \cup \sigma$ uniquely determined by a given nonzero current i_{σ} through σ . Now, we shall define R_{σ} as a ratio of the respective σ -components v_{σ} and i_{σ} of V_{σ} and I_{σ} .

We will present another definition of R_{σ} by introducing *potential* for voltage vectors (see (11) in Section 4). For a 1-dimensional potential theory, refer to [3]. Using this definition, we obtain a formula for R_{σ} via the inverse of the weighted combinatorial Laplacian for X in codimension 1 where the weights are given by the conductances $C = R^{-1}$ (regarding R as a diagonal matrix). This formula generalizes that of effective resistance for 1-dimensional networks via the inverse of the combinatorial Laplacian in dimension zero [18,15].

We will obtain another formula for R_{σ} (Theorem 5.2) via weighted high-dimensional tree-numbers for X with the weights $C = R^{-1}$. We refer the readers to [5,6,13] for high-dimensional tree-numbers. This formula generalizes a well-known combinatorial interpretation [19] of effective resistance for resistor networks. For its application, we will derive a high-dimensional analogue of Foster's Theorem [8], and compute effective resistance for the standard simplexes (Example 5.5), the complete colorful complexes (Example 5.6), and the hypercubes (Example 5.7).

2. Preliminaries

In this section, we will review definitions regarding simplicial complexes and homology groups. Refer to [17] for further details. We will collect relevant definitions and Download English Version:

https://daneshyari.com/en/article/8900455

Download Persian Version:

https://daneshyari.com/article/8900455

Daneshyari.com