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We prove that iterated toric fibre products from a finite 
collection of toric varieties are defined by binomials of 
uniformly bounded degree. This implies that Markov random 
fields built up from a finite collection of finite graphs have 
uniformly bounded Markov degree.
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1. Introduction and main results

The notion of toric fibre product of two toric varieties goes back to [18]. It is of 
relevance in algebraic statistics since it captures algebraically the Markov random field 
on a graph obtained by gluing two graphs along a common subgraph; see [13] and also 
below. In [18,13,12] it is proved that under certain conditions, one can explicitly construct 
a Markov basis for the large Markov random field from bases for the components. For 
related results see [16,5,8].

However, these conditions are not always satisfied. Nevertheless, in [13, Conjecture 
56] the hope was raised that when building larger graphs by gluing copies from a fi-
nite collection of graphs along a common subgraph, there might be a uniform upper 
bound on the Markov degree of the models thus constructed, independent of how many 
copies of each graph are used. A special case of this conjecture was proved in the same 
paper [13, Theorem 54]. We prove the conjecture in general, and along the way we 
link it to recent work [17] in representation stability. Indeed, an important point we 
would like to make, apart from proving said conjecture, is that algebraic statistics is 
a natural source of problems in asymptotic algebra, to which ideas from representa-
tion stability apply. Our main theorems are reminiscent of Sam’s recent stabilisation 
theorems on equations and higher syzygies for secant varieties of Veronese embed-
dings [14,15].

1.1. Markov random fields

Let G = (N, E) be a finite, undirected, simple graph and for each node j ∈ N let Xj

be a random variable taking values in the finite set [dj] := {1, . . . , dj}. A joint probability 
distribution on (Xj)j∈N is said to satisfy the local Markov properties imposed by the 
graph if for any two non-neighbours j, k ∈ N the variables Xj and Xk are conditionally 
independent given {Xl | {j, l} ∈ E}.

On the other hand, a joint probability distribution f on the Xj is said to factorise 
according to G if for each maximal clique C of G and configuration α ∈

∏
j∈C [dj ] of the 

random variables labelled by C there exists an interaction parameter θCα such that for 
each configuration β ∈

∏
j∈N [dj ] of all random variables of G:

f(β) =
∏

C∈mcl(G)

θCβ|C

where mcl(G) is the set of maximal cliques of G, and β|C is the restriction of β to C.
These two notions are connected by the Hammersley–Clifford theorem, which says 

that a positive joint probability distribution on G factorises according to G if and only 
if it satisfies the Markov properties; see [6] or [9, Theorem 3.9].
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