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1. Introduction and main results

The notion of toric fibre product of two toric varieties goes back to [18]. Tt is of
relevance in algebraic statistics since it captures algebraically the Markov random field
on a graph obtained by gluing two graphs along a common subgraph; see [13] and also
below. In [18,13,12] it is proved that under certain conditions, one can explicitly construct
a Markov basis for the large Markov random field from bases for the components. For
related results see [16,5,8].

However, these conditions are not always satisfied. Nevertheless, in [13, Conjecture
56] the hope was raised that when building larger graphs by gluing copies from a fi-
nite collection of graphs along a common subgraph, there might be a uniform upper
bound on the Markov degree of the models thus constructed, independent of how many
copies of each graph are used. A special case of this conjecture was proved in the same
paper [13, Theorem 54]. We prove the conjecture in general, and along the way we
link it to recent work [17] in representation stability. Indeed, an important point we
would like to make, apart from proving said conjecture, is that algebraic statistics is
a natural source of problems in asymptotic algebra, to which ideas from representa-
tion stability apply. Our main theorems are reminiscent of Sam’s recent stabilisation
theorems on equations and higher syzygies for secant varieties of Veronese embed-
dings [14,15].

1.1. Markov random fields

Let G = (N, E) be a finite, undirected, simple graph and for each node j € N let X
be a random variable taking values in the finite set [d;] := {1,...,d;}. A joint probability
distribution on (X;)jen is said to satisfy the local Markov properties imposed by the
graph if for any two non-neighbours j, k € N the variables X; and X}, are conditionally
independent given {X; | {j,(} € E}.

On the other hand, a joint probability distribution f on the X; is said to factorise
according to G if for each maximal clique C' of G and configuration o € [[;c[d;] of the
random variables labelled by C' there exists an interaction parameter #$ such that for
each configuration 3 € [, y[d;] of all random variables of G-
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where mcl(G) is the set of maximal cliques of G, and f|¢ is the restriction of 8 to C.

These two notions are connected by the Hammersley—Clifford theorem, which says
that a positive joint probability distribution on G factorises according to G if and only
if it satisfies the Markov properties; see [6] or [9, Theorem 3.9].
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