

Contents lists available at ScienceDirect

Advances in Applied Mathematics

APPLIED MATHEMATICS

www.elsevier.com/locate/yaama

Bijective enumerations of Γ -free 0–1 matrices

Beáta Bényi ^a, Gábor V. Nagy ^{b,*}

^a Faculty of Water Sciences, National University of Public Service, Hungary ^b Bolyai Institute, University of Szeged, Hungary

ARTICLE INFO

Article history: Received 2 August 2017 Received in revised form 6 December Accepted 12 December 2017

MSC: 05A0505A19

Keywords: Γ-free matrix Non-ambiguous forest

ABSTRACT

We construct a new bijection between the set of $n \times k$ 0–1 matrices with no three 1's forming a Γ configuration and the set of (n, k)-Callan sequences, a simple structure counted by poly-Bernoulli numbers. We give two applications of this result: We derive the generating function of Γ -free matrices, and we give a new bijective proof for an elegant result of Aval et al. that states that the number of complete nonambiguous forests with n leaves is equal to the number of pairs of permutations of $\{1, \ldots, n\}$ with no common rise.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We call a 0-1 matrix Γ -free if it does not contain 1's in positions such that they form a Γ configuration; i.e. two 1's in the same row and a third 1 below the left of these in the same column. $\Gamma = \frac{1}{1} \frac{1}{*}$. For instance, matrix A is not Γ -free because the bold 1's form a Γ configuration, while matrix B is a Γ -free matrix.

$$A = \begin{pmatrix} 0 & \mathbf{1} & \mathbf{1} & 0 \\ 1 & 1 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

E-mail addresses: beata.benyi@gmail.com (B. Bényi), ngaba@math.u-szeged.hu (G.V. Nagy).

Corresponding author.

The poly-Bernoulli numbers B_n .						
n, k	0	1	2	3	4	5
0	1	1	1	1	1	1
1	1	2	4	8	16	32
2	1	4	14	46	146	454
3	1	8	46	230	1066	4718
4	1	16	146	1066	6906	41506
5	1	32	454	4718	41506	329462

Table 1 The poly-Bernoulli numbers $B_n^{(-k)}$.

Clearly, we can say that a matrix is Γ -free if and only if it does not contain any of the submatrices from the following set:

$$\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}.$$

Pattern avoidance is an important notion in combinatorics. Matrices were also investigated from different point of view in this context; both extremal [9] and enumerative [11], [12] results are known.

Γ-free 0–1 matrices of size $n \times k$ contain at most n+k-1 1's [9]. The set of $n \times k$ 0–1 Γ-free matrices is one of the matrix classes that are enumerated by the poly-Bernoulli numbers, $B_n^{(-k)}$ [4]. Besides matrix classes that are characterized by excluded submatrices there are several other combinatorial objects that are enumerated by the poly-Bernoulli numbers. For instance, permutations with a given exceedance set, permutations with a constraint on the distance of their values and images, Callan permutations, acyclic orientations of complete bipartite graphs, non-ambiguous forests, etc. For further details, including recurrence relations and the original definition of poly-Bernoulli numbers via generating function, see [4], [5] and [6]. There is also a nice combinatorial formula of the poly-Bernoulli numbers of negative k indices: For k > 0,

$$B_n^{(-k)} = \sum_{m=0}^{\min(n,k)} m! {n+1 \brace m+1} m! {k+1 \brace m+1},$$
 (1)

where $\binom{n}{m}$ denotes a Stirling number of the second kind. Table 1 shows the values of $B_n^{(-k)}$ for small k and n.

From (1), we give an obvious combinatorial interpretation of the numbers $B_n^{(-k)}$, which will be regarded as their combinatorial definition in this paper. (This interpretation is essentially the same as the one that counts Callan permutations.) On an (n,k)-Callan sequence we mean a sequence $(S_1,T_1),\ldots,(S_m,T_m)$ for some $m\in\mathbb{N}_0$ such that S_1,\ldots,S_m are pairwise disjoint nonempty subsets of $\{1,\ldots,n\}$, and T_1,\ldots,T_m are pairwise disjoint nonempty subsets of $\{1,\ldots,k\}$. We note that the empty sequence is also a Callan sequence with m=0.

Lemma 1. For k > 0, $B_n^{(-k)}$ counts the number of (n, k)-Callan sequences.

Download English Version:

https://daneshyari.com/en/article/8900501

Download Persian Version:

https://daneshyari.com/article/8900501

Daneshyari.com