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An alternating sign matrix, or ASM, is a (0, ±1)-matrix where 
the nonzero entries in each row and column alternate in sign. 
We generalize this notion to hypermatrices: an n × n × n
hypermatrix A = [aijk] is an alternating sign hypermatrix, 
or ASHM, if each of its planes, obtained by fixing one of the 
three indices, is an ASM. Several results concerning ASHMs 
are shown, such as finding the maximum number of nonzeros 
of an n ×n ×n ASHM, and properties related to Latin squares. 
Moreover, we investigate completion problems, in which one 
asks if a subhypermatrix can be completed (extended) into an 
ASHM. We show several theorems of this type.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an n × n (0, ±1)-matrix. Then A is an alternating sign matrix, abbreviated 
ASM, provided in each of the 2n lines of A, that is, its rows and columns, the nonzeros 
alternate beginning and ending with a +1. Permutation matrices are ASMs without 
any −1’s. ASMs were defined by Mills, Robbins, and Ramsey [13] and have a fascinating 
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history which can be found in [2]. Extending some of the work reported in [1] and [15], we 
carried out in [4] a recent study of ASMs and related matrix classes and polyhedra where 
additional references, besides those given here, can be found. Our goal is to generalize 
ASMs to three-dimensional matrices called hypermatrices. In doing so, we were led to a 
fascinating generalization of classical Latin squares.

Let A = [aijk] be an n × n × n hypermatrix. We refer to i as the row index, j as the 
column index, and k as the vertical index of the hypermatrix A. Then A has three types 
of lines, each of cardinality n:

(i) The row lines (variable row index) A∗jk = [aijk : i = 1, 2, . . . n], (1 ≤ j, k ≤ n);
(ii) The column lines (variable column index) Ai∗k = [aijk : j = 1, 2, . . . n], (1 ≤ i, k ≤

n);
(iii) The vertical lines (variable vertical index) Aij∗ = [aijk : k = 1, 2, . . . n], (1 ≤ i, j ≤

n).

Similarly, A has three types of planes, each of cardinality n2:

(i) The horizontal planes (or row-column planes) (variable row and column indices) 
Ah

k = A∗∗k = [aijk : i, j = 1, 2, . . . n], (1 ≤ k ≤ n);
(ii) The row-vertical planes (variable row and vertical indices) Acv

j = A∗j∗ = [aijk :
i, k = 1, 2, . . . n], (1 ≤ j ≤ n);

(iii) The column-vertical planes (variable column and vertical indices) Arv
i = Ai∗∗ =

[aijk : j, k = 1, 2, . . . n], (1 ≤ i ≤ n).

The intersection of two planes of different types is a line; for instance, the intersection 
of a horizontal plane with a column-vertical plane is a column line:

A∗∗k ∩ Ai∗∗ = Ai∗k.

We usually denote the n × n × n hypermatrix A by

A = [Ah
1 , A

h
2 , . . . , A

h
n], abbreviated to A = [A1, A2, . . . , An]

where the Ai are the horizontal planes A∗∗k. To denote the fact that A is a 3-dimensional 
array, we also write

A = A1 ↗ A2 ↗ · · · ↗ An

where the north-east arrow Ai ↗ Ai+1 is read as Ai is below Ai+1 (or Ai+1 is on top of 
Ai). We can also write

A = [Acv
1 , Acv

2 , . . . , Acv
n ] and A = [Arv

1 , Arv
2 , . . . , Arv

n ].
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