On the complexity of generalized chromatic polynomials

A. Goodall ${ }^{\mathrm{a}, 1}$, M. Hermann ${ }^{\mathrm{b}, 2}$, T. Kotek ${ }^{\mathrm{c}, 3}$, J.A. Makowsky ${ }^{\mathrm{d}, *, 2}$, S.D. Noble ${ }^{\mathrm{e}, 1}$
${ }^{\text {a }}$ IUUK, MFF, Charles University, Prague, Czech Republic
${ }^{\text {b }}$ LIX (CNRS, UMR 7161), École Polytechnique, 91128 Palaiseau, France
${ }^{\text {c }}$ Technische Universität Wien, Institut für Informationssysteme, 1040 Wien, Austria
${ }^{\text {d }}$ Department of Computer Science, Technion-IIT, 32000 Haifa, Israel
${ }^{\text {e }}$ Department of Economics, Mathematics and Statistics, Birkbeck, University of London, London, United Kingdom

A R T I C L E I N F O

Article history:

Received 2 May 2016
Received in revised form 7 April 2017
Accepted 7 April 2017
Available online xxxx

MSC:

05 C 15
05C31
05 C 85
68Q17

Abstract

J. Makowsky and B. Zilber (2004) showed that many variations of graph colorings, called CP-colorings in the sequel, give rise to graph polynomials. This is true in particular for harmonious colorings, convex colorings, $m c c_{t}$-colorings, and rainbow colorings, and many more. N. Linial (1986) showed that the chromatic polynomial $\chi(G ; X)$ is \# \mathbf{P}-hard to evaluate for all but three values $X=0,1,2$, where evaluation is in \mathbf{P}. This dichotomy includes evaluation at real or complex values, and has the further property that the set of points for which evaluation is in \mathbf{P} is finite. We investigate how the complexity of evaluating univariate graph polynomials that arise

[^0]http://dx.doi.org/10.1016/j.aam.2017.04.005
0196-8858/© 2017 Elsevier Inc. All rights reserved.

68W05

Keywords:

Graph polynomials Counting complexity
Chromatic polynomial
from CP-colorings varies for different evaluation points. We show that for some CP-colorings (harmonious, convex) the complexity of evaluation follows a similar pattern to the chromatic polynomial. However, in other cases (proper edge colorings, $m c c_{t}$-colorings, H-free colorings) we could only obtain a dichotomy for evaluations at non-negative integer points. We also discuss some CP-colorings where we only have very partial results.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

By a classical result of R. Ladner, and its generalization by K. Ambos-Spies, [40,5], there are infinitely many degrees (via polynomial time reducibility) between \mathbf{P} and $\mathbf{N P}$, and between \mathbf{P} and $\# \mathbf{P}$, provided $\mathbf{P} \neq \mathbf{N P}$. In contrast to this, the complexity of evaluating partition functions or counting graph homomorphisms satisfies a dichotomy theorem: either evaluation is in \mathbf{P} or it is $\# \mathbf{P}$-complete, $[21,12,13]$. For the definition of the complexity class $\# \mathbf{P}$, see [26] or [49].

In accordance with the literature in graph theory a finite graph $G=(V(G), E(G))$ with $n(G)=|V(G)|$ and $e(G)=|E(G)|$ has order $n(G)$ and size $e(G)$. Otherwise, the size of a finite set is its cardinality.

In this paper we study the complexity of the evaluation of generalized univariate chromatic polynomials, as introduced in [45] and further studied in [38,39]. They will be called in the sequel CP-colorings (for Counting Polynomials). Among these we find:

Examples 1.1.

(i) Trivial (unrestricted) vertex colorings using at most k colors are just functions $V(G) \rightarrow[k]$. We denote by $\chi_{\text {trivial }}(G ; k)$ the number of trivial colorings of G, hence $\chi_{\text {trivial }}(G ; k)=k^{|V(G)|} \in \mathbb{Z}[k]$.
(ii) Proper vertex colorings using at most k colors, where two neighboring vertices receive different colors, are counted by $\chi(G ; k)$, the classical chromatic polynomial.
(iii) Proper edge colorings using at most k colors, where two edges with a common vertex receive different colors, are counted by $\chi_{\text {edge }}(G ; k)$, the edge chromatic polynomial. We note that they are exactly the proper vertex colorings of the line graph $L(G)$ of G.
(iv) Convex colorings using at most k colors are vertex colorings, which are not necessarily proper, but where each color class induces a connected subgraph. They are counted by $\chi_{\text {convex }}(G ; k)$. Convex colorings are first introduced in [48].
(v) Harmonious colorings using at most k colors are proper vertex colorings such that no two edges have end-vertices receiving the same pair of colors. They were

https://daneshyari.com/en/article/8900542

Download Persian Version:

https://daneshyari.com/article/8900542

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: andrew@iuuk.mff.cuni.cz (A. Goodall), Miki.Hermann@lix.polytechnique.fr
 (M. Hermann), kotek@forsyte.at (T. Kotek), janos@cs.technion.ac.il (J.A. Makowsky), s.noble@bbk.ac.uk (S.D. Noble).

 URLs: http://kam.mff.cuni.cz/~andrew (A. Goodall), http://www.lix.polytechnique.fr/Labo/Miki.Hermann (M. Hermann), http://forsyte.at/~kotek/ (T. Kotek), http://www.cs.technion.ac.il/~janos (J.A. Makowsky),
 http://www.bbk.ac.uk/ems/faculty/steven-noble (S.D. Noble).
 ${ }^{1}$ Supported by the Heilbronn Institute for Mathematical Research, Bristol, UK.
 ${ }^{2}$ Work done in part while the authors were visiting the Simons Institute for the Theory of Computing in Spring 2016.
 ${ }^{3}$ Supported by the Austrian National Research Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF).

