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J. Makowsky and B. Zilber (2004) showed that many vari-
ations of graph colorings, called CP-colorings in the sequel, 
give rise to graph polynomials. This is true in particular for 
harmonious colorings, convex colorings, mcct-colorings, and 
rainbow colorings, and many more. N. Linial (1986) showed 
that the chromatic polynomial χ(G; X) is #P-hard to eval-
uate for all but three values X = 0, 1, 2, where evaluation is 
in P. This dichotomy includes evaluation at real or complex 
values, and has the further property that the set of points for 
which evaluation is in P is finite. We investigate how the com-
plexity of evaluating univariate graph polynomials that arise 
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from CP-colorings varies for different evaluation points. We 
show that for some CP-colorings (harmonious, convex) the 
complexity of evaluation follows a similar pattern to the chro-
matic polynomial. However, in other cases (proper edge col-
orings, mcct-colorings, H-free colorings) we could only obtain 
a dichotomy for evaluations at non-negative integer points. 
We also discuss some CP-colorings where we only have very 
partial results.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

By a classical result of R. Ladner, and its generalization by K. Ambos-Spies, [40,5], 
there are infinitely many degrees (via polynomial time reducibility) between P and NP, 
and between P and #P, provided P �= NP. In contrast to this, the complexity of 
evaluating partition functions or counting graph homomorphisms satisfies a dichotomy 
theorem: either evaluation is in P or it is #P-complete, [21,12,13]. For the definition of 
the complexity class #P, see [26] or [49].

In accordance with the literature in graph theory a finite graph G = (V (G), E(G))
with n(G) = |V (G)| and e(G) = |E(G)| has order n(G) and size e(G). Otherwise, the 
size of a finite set is its cardinality.

In this paper we study the complexity of the evaluation of generalized univariate 
chromatic polynomials, as introduced in [45] and further studied in [38,39]. They will be 
called in the sequel CP-colorings (for Counting Polynomials). Among these we find:

Examples 1.1.

(i) Trivial (unrestricted) vertex colorings using at most k colors are just functions 
V (G) → [k]. We denote by χtrivial(G; k) the number of trivial colorings of G, 
hence χtrivial(G; k) = k|V (G)| ∈ Z[k].

(ii) Proper vertex colorings using at most k colors, where two neighboring vertices 
receive different colors, are counted by χ(G; k), the classical chromatic polynomial.

(iii) Proper edge colorings using at most k colors, where two edges with a common 
vertex receive different colors, are counted by χedge(G; k), the edge chromatic poly-
nomial. We note that they are exactly the proper vertex colorings of the line graph 
L(G) of G.

(iv) Convex colorings using at most k colors are vertex colorings, which are not neces-
sarily proper, but where each color class induces a connected subgraph. They are 
counted by χconvex(G; k). Convex colorings are first introduced in [48].

(v) Harmonious colorings using at most k colors are proper vertex colorings such 
that no two edges have end-vertices receiving the same pair of colors. They were 
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