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Empirical-likelihood based inference for the parameters in generalized additive partial lin- 

ear models (GAPLM) is investigated. With the use of the polynomial spline smoothing 

for estimation of nonparametric functions, an estimated empirical likelihood ratio statis- 

tic based on the quasi-likelihood equation is proposed. We show that the resulting statis- 

tic is asymptotically standard chi-squared distributed and the confidence regions for the 

parametric components are constructed. Some simulations are conducted to illustrate the 

proposed methods. 
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1. Introduction 

The generalized additive partial linear model (GAPLM) [3] is a realistic, parsimonious candidate when one believes that 

the relationship between the dependent variable and some of the covariates has a parametric form, while the relationship 

between the dependent variable and the remaining covariates may not be linear. GAPLM enjoys the simplicity of the gener- 

alized linear model (GLM) and the flexibility of the generalized additive model (GAM), because it combines both parametric 

and nonparametric components. 

Let Y be the response variable, X = (X 1 , . . . , X d 1 ) 
T ∈ R d 1 and Z = (Z 1 , . . . , Z d 2 ) 

T ∈ R d 2 be the covariates. We assume the 

conditional density of Y given ( X , Z ) = ( x , z ) belongs to the exponential family 

f Y | X , Z (y | x , z ) = exp [ yξ ( x , z ) − B { ξ ( x , z ) } + C(y )] , (1.1) 

where B and C are known functions, ξ is the so-called natural parameter in parametric generalized linear models (GLM), is 

related to the unknown mean response by 

μ( x , z ) = E(Y | X = x , Z = z ) = B 

′ { ξ ( x , z ) } . 
In parametric GLM, the mean function μ is defined via a known link function g by g{ μ( x , z ) } = x T ααα + z T βββ, where ααα and βββ
are parametric vectors to be estimated. In GAPLM, g ( μ) is modeled as additive partial linear function 

g{ μ( x , z ) } = 

d 1 ∑ 

k =1 

ηk (x k ) + z T βββ, (1.2) 
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where βββ is a d 2 -dimensional regression parameter, { ηk } d 1 k = 1 are unknown and smooth functions and E{ ηk (X k ) } = 0 for 

1 ≤ k ≤ d 1 for identifiability. Furthermore, without loss of generality, we assume the distribution of X k , 1 ≤ k ≤ d 1 is supported 

on [0,1]. 

If the conditional variance function V ar(Y | X = x , Z = z ) = σ 2 V { μ( x , z ) } for some known positive function V , then es- 

timation of the mean can be achieved by replacing the conditional loglikelihood function log{ f Y | X, Z ( y | x, z )} in ( 1.1 ) by a 

quasi-likelihood function Q ( m , y ), which satisfies 

∂ 

∂m 

Q(m, y ) = 

y − m 

V ( m ) 
. 

Wang et al. [10] provided a simple method of estimating βββ and { ηk } d 1 k = 1 in model (1.2) based on a quasi-likelihood proce- 

dure [7] with polynomial spline. However, it is theoretically complicated to prove the convergence results of the maximum 

likelihood estimates for the nonparametric functions and the asymptotic normality of the estimators for the parametric 

components. In this paper, we extend the empirical likelihood method to the GAPLM with polynomial spline smoothing 

for the nonparametric parts. Based on an efficient one-step procedure of maximizing the quasi-likelihood function, an esti- 

mated empirical likelihood ratio statistic for the parameter βββ in the GAPLM is defined, and the confidence regions for the 

parametric components can be constructed accordingly. 

The rest of the paper is organized as follows. In Section 2 , we propose polynomial spline estimator via a quasi-likelihood 

approach, the estimated empirical likelihood ratio of the parametric part is defined and the main results are also given. 

In Section 3 , we provide examples based on simulated data, the converge accuracy of the proposed empirical likelihood 

method is investigated. The proofs of the main results are collected in Section 4 . 

2. Methodology and main results 

Let (Y i , X i , Z i ) , i = 1 , . . . , n, be independent copies of ( Y , X, Z ). To avoid confusion, let η0 = 

∑ d 1 
k = 1 η0 k (x k ) and βββ0 be the 

true parameter values, respectively. We use polynomial splines to approximate the nonparametric components. We introduce 

a knot sequence with J interior knots: 

τ−r + 1 = · · · = τ−1 = τ0 = 0 < τ1 < · · · < τJ < 1 = τJ+1 = · · · = τJ + r , 

where J ≡ J n increases when sample size n increases. We only restrict our attention to equally spaced knots although data- 

driven choice can be considered such as putting knots at certain sample quantiles of the observed covariate values. A poly- 

nomial spline of order r is a function whose restriction to each subinterval is a polynomial spline of degree r − 1 and glob- 

ally r − 2 times continuously differentiable on [0,1]. The collection of spline with a fixed sequence of knots has a B -spline 

basis { B 1 (x ) , . . . , B J n + r (x ) } . Because of the centering constraint E{ ηk (X k ) } = 0 , let N n = J n + r − 1 , we adopt the normalized 

B -spline space S 0 n introduced in Ref. [11] with the following normalized basis 

B j,k (x k ) = 

√ 

N n 

{
b j + 1 ,k (x k ) −

E(b j+1 ,k ) 

E(b 1 ,k ) 
b 1 ,k (x k ) 

}
, 1 ≤ j ≤ N n , 1 ≤ k ≤ d 1 , 

for the k th covariate x k , where { b j,k (x k ) , j = 1 , . . . , J n + r, k = 1 , . . . , d 1 } be the B -spline basis functions of order r . Let 

B (x ) = { B j,k (x k ) , j = 1 , . . . , N n , k = 1 , . . . , d 1 } T and B i = B (X i ) , and γγγ = { γ j,k , j = 1 , . . . , N n , k = 1 , . . . , d 1 } T is the spline coef- 

ficient vector, write η(X i ) = B 

T 
i 
γγγ . The two-step estimation procedure for η0 and βββ0 is as follows: 

Step 1. Find ( ̂  γγγ , ˆ βββ) by maximizing the quasi-likelihood function: 

( ̂  γγγ , ˆ βββ) = arg max 
γγγ , βββ

n 

−1 
n ∑ 

i =1 

Q[ g −1 { B 

B B 

T 
i γγγ + Z 

T 
i βββ} , Y i ] . 

Then the spline estimator of η0 is ˆ η(x ) = 

ˆ γγγ T 
B (x ) , and the centered spline estimators of component functions are 

ˆ ηk (x k ) = 

N n ∑ 

j=2 

ˆ γ j,k B j,k (x k ) − n 

−1 
n ∑ 

i = 1 

N n ∑ 

j = 2 

ˆ γ j,k B j,k (X ik ) , k = 1 , . . . , d 1 . 

Step 2. Update ˆ βββ by maximizing the following function: 

n 

−1 
n ∑ 

i = 1 
Q[ g −1 { ̂  η(X i ) + Z 

T 
i βββ} , Y i ] , (2.1) 

with respect to βββ . 

Step 3. Obtain the final estimator ˆ η(x ) by maximizing the quasi-likelihood function: 

n 

−1 
n ∑ 

i = 1 
Q[ g −1 { B 

B B 

T 
i γγγ + Z 

T 
i 

ˆ βββ} , Y i ] , 
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