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This paper is concerned with the stability problem for a class of neutral type singular sys- 

tems with time-varying delay. The considered systems contain delays both in their state 

and in their derivatives of state. Based on the singular system approach and the Lyapunov–

Krasovskii functional approach, some sufficient conditions which guarantee the considered 

systems to be regular, impulse-free and stable are derived. Finally, some numerical exam- 

ples are provided to show the effectiveness of the presented methods. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Singular systems, which can represent physical systems better than regular ones and sometimes are also called 

differential-algebraic systems, generalized state-space systems, implicit systems, semi-state systems or descriptor systems, 

have important applications in, e.g., circuit systems, chemical systems and economic systems [1] . Therefore, during the past 

several decades, many researchers have paid attention to studying the singular systems and a number of important and 

interesting results have been presented, see, e.g., [2–14] . These papers cover a lot of topics related to the singular systems, 

including the dissipative fault-tolerant control problem based on slow state feedback [2] , slow state variables feedback 

stabilization problem [3] , L 2 − L ∞ 

synchronization problem [4] , stability and stabilization problems [5–8] , filtering problem 

[9–12] and dissipative control problem [13,14] . 

As is well known, time delay arises frequently in the practical systems and is often the cause of instability and poor 

performance. Therefore, the stability problem for the systems with time delay has attracted considerable attention in the 

past several decades, see, e.g., [15–24] . The neutral systems, which contain delays both in their state and in their derivatives 

of state, are a class of important time delay systems and encountered frequently in many practical systems, such as bipolar 

dissolving tanks in chemical process, vibrating masses attached to an elastic bar and distributed networks containing 

lossless transmission lines [25,41] . The stability problem for the neutral systems also has investigated widely in the past 

several decades, see, e.g., [26–37] . 
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Recently, there has been some interest on the neutral type singular systems(NTSSs). Li et al. [38] gave a solution to 

the stability problem for the NTSSs with mixed delays. The robust stability problem for uncertain NTSSs was studied 

in [39] . Wang et al. [40] considered the problems of robust stability and stabilization for uncertain NTSSs. Wang et al. 

[41] and [42] investigated the PD feedback H ∞ 

control problem and the output strictly passive control problem for 

uncertain NTSSs, respectively. It should be pointed out that the results presented in [38] and [39] are invalid if the NTSSs 

do not satisfy ‖ E −1 
1 

C 1 ‖ < 1 or det (C 2 ) � = 0 (for more information, please see Remark 2 in this paper). If the NTSSs do not 

satisfy det (E − C) � = 0 , the results presented in [40–42] are invalid. In addition, in [38–42] , the considered NTSSs are with 

invariant time delay. The NTSSs with time-varying delay are not investigated in [38–42] . To the best of our knowledge, 

the stability problem for NTSSs has not been fully studied. If the considered NTSS is with time-varying delay and dose not 

satisfy det (E − C) � = 0 (from ‖ E −1 
1 

C 1 ‖ < 1 and det (C 2 ) � = 0 , it can be deduced that det (E − C) � = 0 ), almost no results in the 

existing literature can be applied to analyzing its stability problem. It is also worth pointing out that the NTSSs have wide 

applications in the practical systems (please see Remark 1 for some practical applications). Therefore, either in theory or in 

practice, it is significant and necessary to further study the NTSSs. This motivates the present work of this paper. 

This paper deals with the stability problem for a class of NTSSs with time-varying delay. By using the singular system 

method and the Lyapunov–Krasovskii functional method, sufficient conditions are presented to guarantee the considered 

system to be regular, impulse-free and stable. The main contributions of this paper can be summarized as follows. First, the 

NTSSs considered in [38–42] are with constant time delay, while the NTSSs considered in this paper are with time-varying 

delay, which is a more general time delay case. Second, Li et al. [38] , Wang and Xue [39] , and Wang et al. [40–42] employed 

the operator � (x t ) = Ex (t) − Cx (t − τ ) to study the NTSSs. However, if the considered NTSSs do not satisfy det (E − C) � = 0 , 

the results presented in [38–42] are invalid. In this paper, we use the singular system method and the obtained results can 

be applied to analyzing the NTSSs which do not satisfy det (E − C) � = 0 . Third, some numerical examples illustrate the less 

conservatism of the obtained results of this paper compared with those of [38–42] . 

Notations: In the whole paper, ‖ · ‖ stands for the Euclidean norm for a vector. R n denotes the n-dimensional Euclidean 

space. R m × n is the set of all m × n real matrices. For a real symmetric matrix X , X > 0( X ≥ 0) means that X is positive definite 

(semi-positive definite). I is the identity matrix of appropriate dimensions. The symbol “∗” denotes the symmetric elements 

in a symmetric matrix. det (X ) means the determinant of the matrix X . The superscript “T ” stands for the transpose of 

a matrix or a vector. diag { · · · } denotes a block-diagonal matrix. ρ( · ) means the spectral radius of a matrix. λmax ( · ) and 

λmin ( · ) mean the largest eigenvalue and the smallest eigenvalue of a matrix, respectively. 

2. Preliminaries 

Consider a class of neutral type singular systems with time-varying delay as follows: {
E ̇ x (t) − C ̇ x (t − τ (t)) = Ax (t) + A d x (t − τ (t)) , 

x (θ ) = ϕ(θ ) , θ ∈ [ −τ2 , 0] , 
(1) 

where x ( t ) ∈ R n represents the state vector of the system. The matrices E ∈ R n × n , C ∈ R n × n , A ∈ R n × n and A d ∈ R n × n are known 

real constant matrices. We assume that E is singular and satisfies 0 < rank (E) = q < n . τ ( t ) denotes the time-varying delay 

and satisfies 

0 < τ1 ≤ τ (t) ≤ τ2 , h 1 ≤ ˙ τ (t) ≤ h 2 < 1 , (2) 

where τ 1 , τ 2 , h 1 and h 2 are known real constant scalars. We suppose that τ 2 > τ 1 , h 2 ≥ 0 and h 1 ≤ 0. ϕ(θ ) (θ ∈ [ −τ2 , 0]) is 

a continuous vector valued initial function and we assume that its derivative is also continuous. 

Without loss of generality, we suppose that E = [ 
I q 0 
0 0 

] in this paper (see Remark 1 of [43] ). 

To facilitate the following discussion, we introduce some definitions that are related to singular systems and will be 

used later. 

Definition 1 [12] . ( i ) The pair ( E , A ) is said to be regular if det (sE − A ) is not identically zero. 

( ii ) The pair ( E , A ) is said to be impulse-free if it is regular and deg ( det (sE − A )) = rank (E) . 

Definition 2 [12] . ( i ) System E ̇ x (t) = Ax (t) + A d x (t − τ (t)) ( τ ( t ) satisfies (2) ) is said to be regular and impulse-free, if the 

pair ( E , A ) is regular and impulse-free. 

( ii ) System E ̇ x (t) = Ax (t) + A d x (t − τ (t)) ( τ ( t ) satisfies (2) ) is said to be stable, if for any ε > 0, there exists a scalar 

δ( ε) > 0 such that, for any compatible initial conditions ϕ( t ) satisfying sup −τ2 ≤t≤0 || ϕ(t) || ≤ δ(ε) , its solution x ( t ) satisfies 

|| x ( t )|| ≤ ε. Furthermore, x ( t ) → 0 as t → ∞ . 

( iii ) System E ̇ x (t) = Ax (t) + A d x (t − τ (t)) ( τ ( t ) satisfies (2) ) is said to be admissible, if it is regular, impulse-free and 

stable. 

Some lemmas that will be used in the proof of our main results should be introduced first. 

Lemma 1 [38] . The linear matrix inequality [ 
H P T 

P R 
] > 0 is equivalent to R > 0 , H − P T R −1 P > 0 . 

Lemma 2 [38] . For any real matrices W 1 , W 2 and Q > 0 of appropriate dimensions, the inequality W 

T 
1 

W 2 + W 

T 
2 

W 1 ≤ W 

T 
1 

QW 1 + 

W 

T 
2 

Q 

−1 W 2 holds. 
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