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This paper studies the asymptotic behaviors of one classical chemostat model in a stochas- 

tic environment. Based on the Feller property, sharp conditions are derived for the exis- 

tence of a stationary distribution by using the mutually exclusive possibilities known in 

[11, 12] (See Lemma 2.4 for details), which closes the gap left by the Lyapunov function. 

Further, we obtain a sufficient condition for the extinction of the organism based on two 

noise-induced parameters: an analogue of the feed concentration S ∗ and the break-even 

concentration λ. Results indicate that both noises have negative effects on persistence of 

the microorganism. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Let S ( t ) and x ( t ) be concentrations of the nutrient and the microorganisms at time t respectively, S 0 be the input rate 

of the nutrient, D be the washout rates for S , D 1 be the removal rate combining the dilution rate of the chemostat and 

the death rate of the microorganism x , and 

μS 
k + S be the growth rate function. Then, the chemostat (a basic piece of labora- 

tory apparatus for the continuous culture of microorganisms) is classically represented as a system of ordinary differential 

equations taking the form (See [1,2] ) 

d S ( t ) = 

[
D 

(
S 0 − S ( t ) 

)
− μS ( t ) x ( t ) 

k + S ( t ) 

]
d t, d x ( t ) = 

(
μS ( t ) 

k + S ( t ) 
− D 1 

)
x ( t ) d t. (1) 

Break-even concentration λd = 

kD 1 
μ−D 1 

is an important parameter for analyzing (1) . In detail, if λd ≥ S 0 , the only washout 

equilibrium E 0 = ( S 0 , 0) is globally asymptotically stable; if λd < S 0 , the positive equilibrium E ∗ = (λd , 
D 
(
k + λd 

)(
S 0 −λd 

)
μλd 

) exists 

and is also globally asymptotically stable, see [3,4] for details. 

Due to the existence of random effects almost everywhere in the reality, it is natural to address what happens when 

the stochastic perturbation is taken into account. For instance, Campillo et al. [5] established a set of stochastic chemostat 

models that are valid at different scales and expound the mechanism to switch from one model to another. Imhof and 

Walcher [6] introduced a rigorous method to get the stochastic chemostat model by defining a discrete time Markov chain 

and proving its convergence. The above method has also been used in [7,8] to establish the studied stochastic models. By 

using the method in [6] , a stochastic chemostat model with the classical Monod growth rate function can be written as 
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follows {
dS ( t ) = 

[
D 

(
S 0 − S ( t ) 

)
− μS ( t ) x ( t ) 

k + S ( t ) 
]
d t + σ0 S ( t ) d B 0 (t) , 

dx ( t ) = 

(
μS ( t ) 
k + S ( t ) − D 1 

)
x ( t ) dt + σ1 x ( t ) d B 1 (t) . 

(2) 

B 0 ( t ) and B 1 ( t ) are two independent Brownian motions. The parameters in model (2) are all positive. Then for any initial 

value ( S ( 0 ) , x ( 0 ) ) ∈ R 2 + , model (2) has a uniquely global solution ( S ( t ) , x ( t ) ) ∈ R 2 + a.s. for all t ≥ 0 (See [6 , Proposition 6]). 

Our goal is to establish an almost perfect condition for existence of the stationary distribution for (2) . Further, we derive 

the sufficient condition for extinction of the microorganism. 

Remark 1. Wang and Jiang [8] have studied the stationary distribution for the stochastic chemostat model with general re- 

sponse functions. Except for the linear growth rate, the actual growth rate function will be less than its value at S 0 in time 

average subject to the effects of noises. However the averaged growth rate function can not be applied in the Lyapunov 

method [8 , Lemma 2.1], and the sufficient condition has to be derived under extra conditions, and is not the optimal con- 

dition. Different from the above, in this paper we employe the Feller property and mutually exclusive possibilities to derive 

the condition for existence of the stationary distribution, which can close the gap left by using the Lyapunov method. The 

method of this paper can be extended to study the stochastic chemostat models with general response functions. 

2. Conditions for the stationary distribution 

To begin with, let’s prepare some basic results. 

Lemma 2.1 [9 , Lemma 4.9] . For any initial value ϕ ( 0 ) ∈ R + , consider the equation 

d ϕ ( t ) = D 

(
S 0 − ϕ ( t ) 

)
d t + σ0 ϕ ( t ) d B 0 (t) , t > 0 . (3) 

Then (3) has the stationary distribution 

p ( x ) = 

b a 

�( a ) 
x −( a +1 ) e −

b 
x f or x ∈ R + with a = 

2 

σ 2 
0 

(
D + 

σ 2 
0 

2 

)
, b = 

2 D S 0 

σ 2 
0 

and �( a ) = 

∫ ∞ 

0 

t a −1 e −t dt . 

Lemma 2.2. Let ϕ( t ) be solution of (3) , then lim 

t→∞ 

ln (k + ϕ(t) ) 
t = 0 a.s. 

Proof. Let ξ ( t ) be solution of dξ (t) = −Dξ (t) dt + σ0 ξ (t) dB 0 (t) with ξ (0) = 1 . By using It ̂ o formula to ln ξ ( t ) and 

then taking integrations, ξ (t) = e −( D + σ
2 
0 
2 

) t + σ0 B 0 (t ) . Then, by applying the variation-of-constants formula, it yields 

ϕ(t) = ϕ(0) e −( D + σ
2 
0 
2 

) t + σ0 B 0 (t ) + D S 0 
∫ t 

0 e 
−( D + σ

2 
0 
2 

)( t−s )+ σ0 ( B 0 (t) −B 0 (s ) ) ds . Then ϕ(t) ≤ ϕ(0) e σ0 B 0 (t) + 

D S 0 

D + σ
2 
0 
2 

e 
σ0 sup 

0 ≤s ≤t 
2 | B 0 (s ) | 

. Noting 

lim 

t→∞ 

sup 
0 ≤s ≤t 

| B 0 (s ) | 
t = 0 , we get the desired result. �

Remark 2. Similar to proof of Lemma 2.2 , lim 

t→∞ 

1 
t ( ln ( k + S(t) + x (t) ) ) = 0 a.s. 

Remark 3. Note the positivity of ( S ( t ), x ( t )) and ϕ( t ), then S ( t ) ≤ϕ( t ) a.s. holds due to the stochastic comparison theorem. 

Lemma 2.3. Let ( S ( t ), x ( t )) be solution of (2) with initial value ( S( 0) , x ( 0) ) ∈ R 2 + , then for any p ∈ [ 1 , 1 + 

2 min { D, D 1 } 
max { σ 2 

0 
,σ 2 

1 
} ] , it holds 

that 

E [ S ( t ) + x ( t ) ] 
p ≤ 2 K(p) 

γ (p) 
+ [ S ( 0 ) + x ( 0 ) ] 

p e −
pγ (p) 

2 t and lim sup 

t→∞ 

1 

t 

∫ t 

0 

E [ S ( s ) + x ( s ) ] 
p ds ≤ 2 K(p) 

γ (p) 
, 

where K(p) = sup 

x> 0 

{ D S 0 x p−1 − γ (p) 
2 x p } and γ (p) = [ min { D, D 1 } − ( p−1 ) 

2 max { σ 2 
0 
, σ 2 

1 
} ] . 

Proof. Applying It ̂ o formula to model (2) yields 

d [ S ( t ) + x ( t ) ] 
p = p 

{ 

[ S ( t ) + x ( t ) ] 
p−1 

[
D S 0 − DS ( t ) − D 1 x ( t ) 

]
+ 

( p − 1 ) 

2 

[ S ( t ) + x ( t ) ] 
p−2 

(
σ 2 

0 S 
2 ( t ) + σ 2 

1 x 
2 ( t ) 

)} 

dt 

+ p [ S ( t ) + x ( t ) ] 
p−1 

( σ0 S ( t ) d B 0 (t) + σ1 x ( t ) d B 1 (t) ) 

≤ p 

{ 

D S 0 [ S ( t ) + x ( t ) ] 
p−1 −

[ 
min { D, D 1 } − ( p − 1 ) 

2 

max 
{
σ 2 

0 , σ
2 
1 

}] 
[ S ( t ) + x ( t ) ] 

p 
} 

dt 

+ p [ S ( t ) + x ( t ) ] 
p−1 

( σ0 S ( t ) d B 0 (t) + σ1 x ( t ) d B 1 (t) ) 

≤ p 

{ 

K ( p ) − γ ( p ) 

2 

[ S ( t ) + x ( t ) ] 
p 
} 

dt + p [ S ( t ) + x ( t ) ] 
p−1 

( σ0 S ( t ) d B 0 (t) + σ1 x ( t ) d B 1 (t) ) 
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