
Applied Mathematics and Computation 339 (2018) 220–230 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

A note on Katugampola fractional calculus and fractal 

dimensions 

S. Verma, P. Viswanathan 

∗

Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India 

a r t i c l e i n f o 

MSC: 

28A80 

28A78 

26A33 

26A45 

Keywords: 

Katugampola fractional calculus 

Bounded variation 

Unbounded variation point 

Hausdorff dimension 

Box dimension 

a b s t r a c t 

The goal of this paper is to study the Katugampola fractional integral of a continuous 

function of bounded variation defined on a closed bounded interval. We note that the 

Katugampola fractional integral of a function shares some analytical properties such as 

boundedness, continuity and bounded variation of the function defining it. Consequently, 

we deduce that fractal dimensions – Minkowski dimension and Hausdorff dimension – of 

the graph of the Katugampola fractional integral of a continuous function of bounded vari- 

ation are one. A natural question then arises is whether there exists a continuous function 

which is not of bounded variation with its graph having fractal dimensions one. In the last 

part of the article, we construct a continuous function, which is not of bounded variation 

and for which the graph has fractal dimensions one. The construction enunciated herein 

includes previous constructions found in the recent literature as special cases. The article 

also hints at an upper bound for the upper box dimension of the graph of the Katugampola 

fractional derivative of a continuously differentiable function. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The concept of differentiation and integration of non-integer order is nearly as old as classical calculus and it is the 

subject of study in Fractional Calculus (FC). There are several books devoted to FC and its applications, among which the 

encyclopedic treatise by Samko et al. [24] seems to be the most prominent. A survey of many emerging applications of 

FC in diverse areas of science and engineering can be found in [21] . In Refs. [18,19,22,23] attempts have been made to 

provide a geometric and physical interpretation of fractional integration and differentiation, which is comparable with the 

simple interpretations of their integer-order counterparts. It is worth to mention that in these attempts, much effort has 

been devoted to relate FC to Fractal Geometry. Given the inherent naturalness of the subject, applications in science and 

engineering including fractals, and the variety of questions it generates, it is not surprising that FC continues to be an active 

area of research. 

In FC, fractional derivatives are generally defined through fractional integrals; see, for instance, [20,24] . There are various 

formulations for the notion of fractional integral and a convenient approach has to be chosen depending on the model- 

ing problem at hand. Recently, Katugampola [11] produced a fractional integral that generalizes both the Riemann–Liouville 

and Hadamard fractional integrals – the two competing forms of fractional integrals that have been studied extensively for 

their applications. According to the literature, the newly defined fractional integral is known as the Katugampola fractional 
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integral [26] , and in this paper we shall continue to use the same terminology. As a natural follow-up, the Katugampola frac- 

tional derivative is defined in [12] and studied in detail in references [5–7,29] . These new approaches to fractional integral 

and derivative have found applications in fields such as probability theory [1] , numerical analysis [3] , inequalities [28] and 

variational principle [4] . 

Among the diverse issues associated to FC, an important research problem that gained recent interest is to estimate 

fractal dimensions (such as the box dimension and Hausdorff dimension) of the graph of the fractional integral of a function. 

The definitions and basic results on the aforementioned approaches to fractal dimensions are assembled in Section 2 . Liang 

[13] studied the box dimension of the graph of the Riemann–Liouville fractional integral of a continuous function of bounded 

variation on a closed bounded interval. The box dimension of the graph of a continuous function which is not of bounded 

variation can be consulted in [14,15,17,25] . More recently, the box dimension of the graph of the Hadamard fractional integral 

of a continuous function of bounded variation and not of bounded variation is investigated in [27] . 

The first part of the current article contributes in establishing fractal dimensions of the graph of the fractional integral of 

a continuous function in the context of the Katugampola fractional integral and hence may be viewed as a sequel to [13,27] . 

In Section 3 , we shall note that the Katugampola fractional integral of a function preserves the basic analytical properties 

such as boundedness, continuity, and bounded variation of the function that defines the integral. Consequently, we deduce 

that fractal dimensions of the graph of the Katugampola fractional integral of a continuous function of bounded variation on 

a closed bounded interval in R are one. We should admit that the influence of Ref. [13] on this part of our research reported 

here goes further. Besides providing us with the motivating question, it also offered us an array of basic tools which we have 

modified and adapted. 

Here and throughout this paper, let us refer to a function which is not of bounded variation as a function of unbounded 

variation. With a slight abuse of terminology, we shall refer to the dimension of the graph of a function as the dimen- 

sion of the function itself. Note that according to the traditional definition, the property of bounded variation of a function 

is global in nature, since it is defined over a set rather than at a point in the domain. Targeting at the classification of 

one-dimensional continuous functions, Liang [14] expanded this notion and distinguished a bounded variation point and an 

unbounded variation point for a function; see Section 2 for precise definitions and relevant notation. Let us mention that 

fractal dimensions of the graph of a continuous function of bounded variation are one [13] . On the other hand, the most 

popular example of a continuous nowhere differentiable function by Weierstrass is of unbounded variation and its graph 

has fractal dimensions larger than one, see [10] . A natural question then arises as to whether there exists a one-dimensional 

continuous function of unbounded variation; see also [2] . One can go further and ask if there exists a one-dimensional con- 

tinuous function with a finite, countable or uncountable number of unbounded variation points. More recently, progress has 

been made in the construction of specific examples of continuous one-dimensional functions of unbounded variation, details 

can be consulted in [14–16,25,27] . The second part of the paper is in this vein. To be precise, in Section 4 , we present a new 

method for the construction of a continuous function of unbounded variation from a prescribed continuous function, which 

we call the generating function. For the constructed function, the cardinality of the set of points of unbounded variation 

and fractal dimensions of the graph depend on the choice of the generating function. Furthermore, we believe that our con- 

struction is conceptually more general and includes some of the constructions of this kind available in the recent literature 

as special cases. 

2. Preliminaries 

In this section we lay out the background material. The reader, if so inclined, may consult [8,9,11,12] for details. 

2.1. Fractal dimensions 

For a non-empty subset U of R 

n , the diameter is defined as 

| U| = sup {‖ x − y ‖ : x, y ∈ U} . 
If { U i } is a countable (or finite) collection of sets of diameter at most δ that cover F ⊆ R 

n , then we say that { U i } is a δ-cover 

of F . Let s be a non-negative real number and δ > 0. Define 

H 

s 
δ(F ) = inf 

{ ∞ ∑ 

i =1 

| U i | s : { U i } is a δ − cover of F 

}
. 

Definition 2.1. The s -dimensional Hausdorff measure of F is defined by H 

s (F ) = lim δ→ 0 H 

s 
δ
(F ) . 

Definition 2.2. Let F ⊆ R 

n and s ≥ 0. The Hausdorff dimension of F is defined as 

dim H (F ) = inf 
{

s : H 

s (F ) = 0 } = sup { s : H 

s (F ) = ∞ 

}
. 

Remark 2.3. If s = dim H (F ) , then H 

s ( F ) may be zero or infinite, or may satisfy 0 < H 

s ( F ) < ∞ . A Borel set satisfying this last 

condition is called an s -set. 
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