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1. Introduction

The trinomial coefficient (Z)Z is given by

an (Z) K= (1xrxHm (11)
2

k=-n

In particular, set (}), =0 if k < —n or k>n. It is easy to see that

(6),- (),

* Corresponding author.
E-mail addresses: nihexia@yeah.net (H.-X. Ni), haopan79@zoho.com (H. Pan).
! The first author is supported by Nanjing University Innovation and Creative Program for Ph.D. candidate (No. CXCY17-10) and the National Natural
Science Foundation of China (Grant No. 11571162).
2 The second author is supported by the National Natural Science Foundation of China (Grant No. 11671197).

https://doi.org/10.1016/j.amc.2018.07.028
0096-3003/© 2018 Published by Elsevier Inc.


https://doi.org/10.1016/j.amc.2018.07.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2018.07.028&domain=pdf
mailto:nihexia@yeah.net
mailto:haopan79@zoho.com
https://doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100001809
https://doi.org/10.1016/j.amc.2018.07.028

H.-X. Ni, H. Pan/Applied Mathematics and Computation 339 (2018) 286-293 287

(0),= ("), (), (o),

The trinomial coefficients were firstly studied by Euler. Euler observed that
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where F; is the nth Fibonacci number given by F, =0, F; =1 and F, = F,_1 + F,_, for n>2. However, (1.2) may fail for n> 8.
In fact, (1.2) is a classical example of the second strong law of small numbers [2]. In 1990, Andrews [1] found that

= n n Fn—l(Fn—l +1)
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and

for any n> 1. Clearly (1.3) implies Euler’s observation, since
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whenever 0 <n < 7. Furthermore, Andrews [1, Eq. (2.18)] completely determined the explicit formulas for

ad n
Z <1Ok+a>2’ a=0,1,...,5.
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On the other hand, the lacunary sum of binomial coefficients

> ()

k=r (mod m)

has been systematically investigated by Sun and Sun [4-9]. For example, in [7], Sun and Sun expressed the sum

P

k=r (mod 10)

in terms of the Fibonacci numbers {F;} and the Lucas numbers {L,}, which are given by Lo =2, Ly =1 and L, =L,_1 +L;,_»
for n>2. In general, in [9], for any m>1 and r € Z, Sun obtained the explicit formula for

z (1)

k=r (mod m)

Let ¢ denote the Euler totient function and let

5 — 1, if mis even,
m 0, if mis odd.

Sun proved that for any n>1,

1
3 (’;) = Y Win (n—2r.d) +2" + (=1)"8n |, (1.4)
O<k<n djm
k=r (mod m) d>2

where {w,(r,d)} is a linear recurrence sequence of order ¢(d)/2. In particular, for any odd n>1,
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0<k<n
k=r (mod 12)

3% 4 (1) (2 +Tua), if n—2r=+1 (mod 12),
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