On the lacunary sum of trinomial coefficients

He-Xia Ni ${ }^{\text {a,1 }}$, Hao Pan ${ }^{\text {b,2,* }}$
${ }^{a}$ Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China
${ }^{\mathrm{b}}$ School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210046, People's Republic of China

A R T I CLE I N F O

MSC:

Primary 11B65
Secondary 05A10
05A19
11B37
11B39
11A07

Keywords:

Trinomial coefficient
Linear recurrence sequence Chebyshev polynomial

A B S T R A C T

The trinomial coefficient $\binom{n}{k}_{2}$ is given by

$$
\sum_{k=-n}^{n}\binom{n}{k}_{2} x^{k}=\left(1+x+x^{-1}\right)^{n}
$$

In this paper, we obtain the explicit formulas for the lacunary sum

$$
\sum_{\substack{-n \leq k \leq n \\ k \equiv r(\bmod m)}}\binom{n}{k}_{2}
$$

For example,

$$
\sum_{\substack{-n \leq k \leq n \\ k=1(\bmod 12)}}\binom{n}{k}_{2}=\frac{2^{n}+3^{n}-(-1)^{n}+6 H_{n}}{12}
$$

where $H_{0}=0, H_{1}=1$ and $H_{n}=2 H_{n-1}+2 H_{n-2}$ for $n \geq 2$.
© 2018 Published by Elsevier Inc.

1. Introduction

The trinomial coefficient $\binom{n}{k}_{2}$ is given by

$$
\begin{equation*}
\sum_{k=-n}^{n}\binom{n}{k}_{2} x^{k}=\left(1+x+x^{-1}\right)^{n} \tag{1.1}
\end{equation*}
$$

In particular, set $\binom{n}{k}_{2}=0$ if $k<-n$ or $k>n$. It is easy to see that

$$
\binom{n}{k}_{2}=\binom{n}{-k}_{2}
$$

[^0]and
$$
\binom{n}{k}_{2}=\binom{n-1}{k}_{2}+\binom{n-1}{k+1}_{2}+\binom{n-1}{k-1}_{2} .
$$

The trinomial coefficients were firstly studied by Euler. Euler observed that

$$
\begin{equation*}
3\binom{n+1}{0}_{2}-\binom{n+2}{0}_{2}=F_{n}\left(F_{n}+1\right), \quad n=0,1, \ldots, 7 \tag{1.2}
\end{equation*}
$$

where F_{n} is the nth Fibonacci number given by $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. However, (1.2) may fail for $n \geq 8$. In fact, (1.2) is a classical example of the second strong law of small numbers [2]. In 1990, Andrews [1] found that

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}\left(\binom{n}{10 k}_{2}-\binom{n}{10 k+1}_{2}\right)=\frac{F_{n-1}\left(F_{n-1}+1\right)}{2} \tag{1.3}
\end{equation*}
$$

for any $n \geq 1$. Clearly (1.3) implies Euler's observation, since

$$
\begin{aligned}
3\binom{n+1}{0}_{2}-\binom{n+2}{0}_{2} & =2\binom{n+1}{0}_{2}-2\binom{n+1}{1}_{2} \\
& =2 \sum_{k=-\infty}^{\infty}\left(\binom{n+1}{10 k}_{2}-\binom{n+1}{10 k+1}_{2}\right)
\end{aligned}
$$

whenever $0 \leq n \leq 7$. Furthermore, Andrews [1, Eq. (2.18)] completely determined the explicit formulas for

$$
\sum_{k=-\infty}^{\infty}\binom{n}{10 k+a}_{2}, \quad a=0,1, \ldots, 5
$$

On the other hand, the lacunary sum of binomial coefficients

$$
\sum_{\substack{0 \leq k \leq n \\ k \equiv r(\bmod m)}}\binom{n}{k}
$$

has been systematically investigated by Sun and Sun [4-9]. For example, in [7], Sun and Sun expressed the sum

$$
\sum_{\substack{0 \leq k \leq n \\ k \equiv r(\bmod 10)}}\binom{n}{k}
$$

in terms of the Fibonacci numbers $\left\{F_{n}\right\}$ and the Lucas numbers $\left\{L_{n}\right\}$, which are given by $L_{0}=2, L_{1}=1$ and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. In general, in [9], for any $m \geq 1$ and $r \in \mathbb{Z}$, Sun obtained the explicit formula for

$$
\sum_{\substack{0 \leq k \leq n \\ k \equiv r(\bmod m)}}\binom{n}{k} .
$$

Let ϕ denote the Euler totient function and let

$$
\delta_{m}= \begin{cases}1, & \text { if } m \text { is even, } \\ 0, & \text { if } m \text { is odd }\end{cases}
$$

Sun proved that for any $n \geq 1$,

$$
\begin{equation*}
\sum_{\substack{0 \leq k \leq n \\ k \equiv r(\bmod m)}}\binom{n}{k}=\frac{1}{m}\left(\sum_{\substack{d \mid m \\ d>2}} w_{\left\lfloor\frac{n+1}{2}\right\rfloor}(n-2 r, d)+2^{n}+(-1)^{r} \delta_{m}\right), \tag{1.4}
\end{equation*}
$$

where $\left\{w_{n}(r, d)\right\}$ is a linear recurrence sequence of order $\phi(d) / 2$. In particular, for any odd $n \geq 1$,

$$
\begin{aligned}
& 12 \sum_{\substack{0 \leq k \leq n \\
k \equiv r(\bmod 12)}}\binom{n}{k}-2^{n}-1 \\
& = \begin{cases}3^{\frac{n+1}{2}}+(-1)^{\frac{r(n-r)}{2}+\frac{n^{2}-1}{8}}\left(2^{\frac{n+1}{2}}+T_{\frac{n+1}{2}}\right), & \text { if } n-2 r \equiv \pm 1(\bmod 12), \\
-3+(-1)^{\frac{r(n-r)}{2}+\frac{n^{2}-1}{8}}\left(2^{\frac{n+1}{2}}-T_{\frac{n+1}{2}}+T_{\frac{n-1}{2}}\right), & \text { if } n-2 r \equiv \pm 3(\bmod 12), \\
-3^{\frac{n+1}{2}}+(-1)^{\frac{r(n-r)}{2}+\frac{n^{2}-1}{8}}\left(2^{\frac{n+1}{2}}-T_{\frac{n-1}{2}}\right), & \text { if } n-2 r \equiv \pm 5(\bmod 12),\end{cases}
\end{aligned}
$$

https://daneshyari.com/en/article/8900584

Download Persian Version:

https://daneshyari.com/article/8900584

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: nihexia@yeah.net (H.-X. Ni), haopan79@zoho.com (H. Pan).
 ${ }^{1}$ The first author is supported by Nanjing University Innovation and Creative Program for Ph.D. candidate (No. CXCY17-10) and the National Natural Science Foundation of China (Grant No. 11571162).
 ${ }^{2}$ The second author is supported by the National Natural Science Foundation of China (Grant No. 11671197).

