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a b s t r a c t 

Zernike moments are a set of orthogonal moments which have been successfully applied 

in the fields of image processing and pattern recognition. An innovative calculation method 

for Zernike moments, named generalized Zernike moments, is presented in this study. The 

generalized Zernike moment is a variant of Zernike moment. In this paper, we are propos- 

ing methods to calculate high-order generalized Zernike moments. Two kinds of recur- 

rence for calculating generalized Zernike moments were introduced with rigorous proofs. 

Through the usage of the symmetries operated by the Dihedral group of order eight, the 

proposed method is fast and stable. The experimental results show that of the proposed 

method took 4.206s to compute the top 500-order generalized Zernike moments of an 

image with 512 by 512 pixels. Furthermore, by choosing the extra parameter α in the re- 

currence, the method enhanced the accuracy remarkably compared to the regular Zernike 

moments. Its normalized mean square error is 0.00144067 when α was set to 66 and the 

top 500-order moments were used to reconstruct the image. This error is 40.47% smaller 

than the one obtained by using the regular Zernike moments. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Zernike polynomials are introduced by the optical physicist Zernike when discussing his phase-contrast method in ap- 

plication to circular concave mirrors [1] . These Zernike polynomials form a basis for the Hilbert space L 2 ( D ) of the square 

integrable functions over the unit disc. For a function f in L 2 ( D ), the coefficients of the inner product of f with Zernike poly- 

nomials are called Zernike moments [2] . Zernike moments are widely applied in many areas of pattern recognition, image 

processing and computer vision, such as shape recognition [3,4] , image retrieval [5,6] , trademark image retrieval [7,8] etc. 

Other variants of Zernike moments, generalized pseudo-Zernike moments introduced in [9] , are applied in face recognition. 

The Zernike polynomials are highly related to the Jacobi polynomials P 
( α,β) 
n (x ) [1,10,11] ; the Kintner’s method [11] , Prata–

Rutsch’s method [12] and the parallel recurrence method developed in [13] can backtrack to the recurrence formulae among 

Jacobi polynomials when computing Zernike moments. 

In Wünsche’s paper [14] and Janssen’s e-print [15] , the theoretical considerations of a generalization for the Zernike poly- 

nomials, i.e., generalized Zernike polynomials, were developed and discussed to a great extent that is beyond the scope of 

this study. The generalized Zernike polynomials R αnm 

(r) e imθ consist of the radial part and the exponential part, where the 

radial part with α > −1 has more general form than in the regular Zernike polynomials. The generalized Zernike radial 

polynomials can be regarded as a special case of Jacobi polynomials and are equivalent to the regular Zernike polynomials 
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for the case α = 0. In the current literature, there is a lack of using generalized Zernike polynomials to calculate moments 

that is named generalized Zernike moments. In the calculation of regular Zernike moments, the Kintner’s method has been 

commonly adopted in the field of pattern recognition and demonstrates excellent performance [11,16–18] . To calculate the 

generalized Zernike moments, a new 3-term recurrence generalizing Kintner’s method is proposed in Theorem 1 . In [15] , 

the generalized radial polynomial represented by integration formula was given, which generalizes the integration formula 

for the Zernike radial polynomial in [19] . Base on this result, a 4-term recurrence for the generalized radial polynomial is 

derived in Theorem 2 which generalizes the formula developed by Shakibaei and Paramesran [20] . With the use of group 

action symmetry of the order eight Dihedral group [21,22] , a computation of generalized Zernike moments can be speeded 

up by more than eight times. With the extra parameter α in the generalized Zernike polynomials, more theoretical consid- 

erations can be undertaken while also providing more choices for applications with better numerical results. 

The rest of the paper is organized as follows. Section 2 provides an overview of the basic theory for generalized Zernike 

moments. In Section 3 , we derive two kinds of recurrence formula among the generalized Zernike radial polynomials which 

play the crucial role of developing the computational theory. In Section 4 two major algorithms are presented. In Section 5 , 

the group action symmetry of Dihedral group is applied to accelerate algorithms. In Section 6 , the computation speed of 

algorithms is compared, and the numerical accuracy is discussed for reconstructed image from its Zernike moments. The 

choice of parameter α is also addressed to reduce the error for reconstructed images. Section 7 is a comparison summary 

of the generalized Zernike moments performances. 

2. Generalized Zernike polynomials and generalized Zernike moments 

Based on the Jacobi polynomial, for the moment order n the repetition m being an integer satisfying m 

≡ n (mod 2) and 

| m | ≤ n . Given a real number α > −1, the generalized Zernike radial polynomial is given by 

R 

α
nm 

(r) = r | m | P (α, | m | ) 
n −| m | 

2 

(2 r 2 − 1) f or 0 ≤ r < 1 . (1) 

When α = 0, R αnm 

(r) = R nm 

(r) becomes the regular Zernike radial polynomial. Using the skew-symmetry relation for Jacobi 

polynomials, one obtains 

R 

α
nm 

(r) = (−1) 
n −| m | 

2 r | m | P (| m | ,α) 
n −| m | 

2 

(1 − 2 r 2 ) (2) 

Let the complex number z = re i θ denote a point within the open unit disc U for 0 ≤ r < 1. The generalized Zernike 

polynomials is defined by 

V 

α
nm 

(z) = V 

α
nm 

(r, θ ) = R 

α
nm 

(r) e imθ . (3) 

Let 

w (z) = (1 − z ̄z ) α = (1 − r 2 ) α (4) 

be defined as the weighted function for α > −1 (where z̄ denotes the complex conjugation of z ). Since Jacobi polynomials 

P 
( α,β) 
n (x ) are orthogonal with respect to the weight (1 − x ) α(1 + x ) β over the closed interval [ − 1, 1] with α > 1 and β > 1 

[10] , it yields the orthogonality of the generalized Zernike radial polynomials for the different order and the same repetition 
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where ( x ) n denotes the falling factorial given in Eq. (6) and �( x ) stands for the Gamma function. 

(x ) n = 

�(x + 1) 

�(x − n + 1) 
= x (x − 1)(x − 2) · · · (x − n + 1) (6) 

Using the Eq. (5) and the orthogonality of the exponential functions e im θ on the unit circle, it follows the orthogonal 

property of generalized Zernike polynomials with respect to the weight w ( z ): ∫ 2 π

0 
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