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This paper briefly surveys Markov’s theorem related to zeros of orthogonal polynomials. 

Monotonicity of zeros of some families of orthogonal polynomials are reviewed in detail. 
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1. Introduction 

Markov’s theorem, dating back to the late 19th century, furnishes a method for obtaining information about zeros of 

orthogonal polynomials from the weight function related to orthogonality. Formally, adopting modern terminology, his result 

is stated as follows (see [22] ): 

Theorem 1.1 [22] . Let { p n ( x , t )} be a sequence of polynomials which are orthogonal on the interval A = (a, b) with respect to 

the weight function ω( x , t ) that depends on a parameter t , t ∈ B = (c, d) , i.e., ∫ b 

a 

p n (x, t) p m 

(x, t) ω(x, t) dx = 0 , m � = n. 

Suppose that ω( x , t ) is positive and has a continuous first derivative with respect to t for x ∈ A , t ∈ B. Furthermore, assume that ∫ b 

a 

x k 
∂ω 

∂t 
(x, t) dx, k = 0 , 1 , . . . , 2 n − 1 , 

converge uniformly for t in every compact subinterval of B. Then the zeros of p n ( x , t ) are increasing (decreasing) functions of t , 

t ∈ B , provided that 

1 

ω(x, t) 

∂ω 

∂t 
(x, t) 

is an increasing (decreasing) function of x , x ∈ A. 
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Markov’s proof is based on the orthogonality relation (cf. [22, Eq. (2)] ) together with the chain rule (cf. [22 , Eq. (5) ]), 

supposing that the zeros are defined implicitly as differentiable functions of the parameter. In addition, as an application 

of this result, Markov established that the zeros of Jacobi polynomials, which are orthogonal in (−1 , 1) with respect to the 

weight function ω(x, α, β) = (1 − x ) α(1 + x ) β , α, β > −1 , are decreasing functions of α and increasing functions of β . Later, 

in 1939, Szeg ̋o, in his classical book [26, Theorem 6.12.1, p. 115] , provided a different proof of Markov’s theorem. Szeg ̋o 

referred his proof of Theorem 1.1 in the following way [26, Footnote 31, p. 116] : “This proof does not differ essentially from the 

original one due to A. Markov, although the present arrangement is somewhat clearer.” Szeg ̋o’s reasoning (argument, approach) 

is based on Gauss mechanical quadrature, which was an approach that Stieltjes suggested to handle the problem, see [25, 

Section 5, p. 391] . In 1971, Freud (see [9, Problem 16, p. 133] ) formulated a version of Markov’s theorem that is a little more 

general, considering sequences of polynomials orthogonal with respect to measures in the form dα(x, t) = ω(x, t) dν(x ) . 

A proof of a result appears in Ismail [12, Theorem 3.2, p. 183 ] (see also in Ismail’s book [13, Theorem 7.1.1, p. 204] ). 

Ismail’s argument of the proof is also based on Gauss mechanical quadrature. As consequence, Ismail provides monotonicity 

properties for the zeros of Hahn and Meixner polynomials (see [13, Theorem 7.1.2, p. 205] ). Kroó and Peherstorfer [18, 

Theorem 1] , in a more general context of approximation theory, extended Markov’s result to zeros of polynomials which 

have the minimal L p -norm. Their approach is based on the implicit function theorem. 

The main concern of this work derives from Markov’s classic 1886 theorem. This allows the approach to be tailored 

towards measures with continuous and discrete parts, thus extending Markov’s result. This point at issue was posed by 

Ismail in his book as an open problem [13, Problem 24.9.1, p. 660] (see also [12, Problem 1, p. 187] ). The question is stated 

as follows: 

Problem 1.1. Let μ be a positive and nontrivial Borel measure on a compact set A ⊂ R . Assume that d μ( x , t ) has the form 

d α(x, t) + d β(x, t) , (1.1) 

where d α( x , t ) := ω( x , t )d ν( x ) and d β(x, t) := 

∑ ∞ 

i =0 ji (t) δy i (t) , 
1 with t ∈ B , B being an open interval on R . Determine sufficient 

conditions in order for the zeros of the polynomial P n ( x , t ) to be strictly increasing (decreasing) functions of t . 

The manuscript is organized in the following way: in Section 2 the main result is stated and proved; in Section 3 some 

conclusions are drawn from the main result, including Markov’s classic theorem, among others; finally, in Section 4 , il- 

lustrative examples are given: in Sections 4.1 and 4.2 monotonicity properties of zeros of polynomials orthogonal with 

respect measures with discrete parts are investigated; in Section 4.3 , sharp monotonicity properties involving the zeros of 

Gegenbauer–Hermite, Jacobi–Laguerre and Laguerre–Hermite orthogonal polynomials are derived. 

2. Main results 

The next result extends Markov’s theorem to measures with continuous and discrete parts, giving an answer to Problem 

1.1 . For a result in the context of polynomials which have minimal L p -norm see [2, Theorem 1.1] . 

Theorem 2.1. Assume the notation and conditions of Problem 1.1 . Assume further the existence and continuity for each x ∈ A and 

t ∈ B of ( ∂ ω/ ∂ t )( x , t ) and, in addition, suppose that 

G (t, x 1 , . . . , x n ) := 

∞ ∑ 

i =0 

g i (t, x 1 , . . . , x n ) 

converges at t = t 0 and 

∂G 

∂t 
(t, x 1 , . . . , x n ) := 

∞ ∑ 

i =0 

∂g i 
∂t 

(t, x 1 , . . . , x n ) , 

∂G 

∂x j 
(t, x 1 , . . . , x n ) = 

∞ ∑ 

i =0 

∂g 

∂x j 
(t, x 1 , . . . , x n ) , 

converge uniformly for t ∈ B , where 

g i (t, x 1 , . . . , x n ) = ji (t)(y i (t) − x k ) 
−1 

n ∏ 

j=1 

(y i (t) − x j ) 
2 

and (x 1 , . . . , x n ) ∈ R 

n . Denote by x 1 (t) , . . . , x n (t) the zeros of P n ( x , t ) . Fix k ∈ { 1 , . . . , n } and set 

d k,i (t) := 

{
y i (t) − x k (t) if y i (t) � = x k (t) , 
1 if y i (t) = x k (t) . 

1 The Dirac measure δy is a positive Radon measure whose support is the set { y }. 
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