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a b s t r a c t 

This article presents the new version of the backward substitution method (BSM) for simu- 

lating transfer in anisotropic and inhomogeneous media governed by linear and fully non- 

linear advection–diffusion-reaction equations (ADREs). The key idea of the method is to 

formulate a general analytical expression of the solution in the form of the series over a 

basis system which satisfies the boundary conditions with any choice of the free parame- 

ters. The radial basis functions (RBFs) of the different types are used to generate the basis 

system for expressing the solution. Then the expression is substituted into the ADRE un- 

der consideration and the free parameters are determined by the collocation inside the 

solution domain. As a result we separate the approximation of the boundary conditions 

and the approximation of the PDE inside the solution domain. This approach leads to an 

important improvement of the accuracy of the approximate solution and can be easily ex- 

tended onto irregular domain problems. Furthermore, the proposed method is extended to 

general fully nonlinear ADREs in combination with the quasilinearization technique. Some 

numerical results and comparisons are provided to justify the advantages of the proposed 

method. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The goal of this paper is to present a meshless numerical technique for solving a steady-state advection–diffusion- 

reaction equation (ADRE) of the following form: 

∇ · Q ( x ) − ∇ · ( a ( x ) u ) + R ( x , u, u x , u y ) = 0 , x = ( x 1 , x 2 ) ∈ �, (1) 

where u ( x ) is the variable of interest (such as the concentration of pollutant and the temperature for heat transfer) and 

Q ( x ) is the flux vector 

Q ( x ) = ̂

 D ( x , u ) ∇u ( x ) , (2) 
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here ̂ D ( x , u ) is a second order tensor of diffusivity associated with the medium. ̂ D ( x , u ) is a symmetric matrix whose entries 

are bounded functions: 

̂ D ( x , u ) = 

(
D 11 ( x , u ) D 12 ( x , u ) 
D 21 ( x , u ) D 22 ( x , u ) 

)
, 

with D 21 = D 12 , D 11 D 22 > D 12 D 21 and a ( x ) = ( a 1 ( x ) , a 2 ( x ) ) is the average velocity of the media. For incompressible media 

vector a ( x ) satisfies the condition div [ a ( x ) ] = 0 . The term 

R ( x , u, u x , u y ) = q ( x , u, u x , u y ) − f ( x ) , 

describes ‘sources’ or ‘sinks’ of the quantity (results of the chemical reactions, heat sources, etc.). The ADRE can be recast 

as follows: 

D 11 ( x , u ) 
∂ 2 u 

∂x 2 
1 

+ 2 D 12 ( x , u ) 
∂ 2 u 

∂ x 1 ∂ x 2 
+ D 22 ( x , u ) 

∂ 2 u 

∂x 2 
2 

+ 

(
dD 11 ( x , u ) 

dx 1 
+ 

dD 12 ( x , u ) 

dx 2 
− a 1 ( x ) 

)
∂u 

∂x 1 
+ 

(
dD 12 ( x , u ) 

dx 1 
+ 

dD 22 ( x , u ) 

dx 2 
− a 2 ( x ) 

)
∂u 

∂x 2 

− div a ( x ) u + q 

(
x , u, 

∂u 

∂x 1 
, 

∂u 

∂x 2 

)
= f ( x ) , (3) 

where 

d 

dx k 
D i j ( x , u ) = 

∂D i j ( x , u ) 

∂x k 
+ 

∂D i j ( x , u ) 

∂u 

∂u 

∂x k 
, 

are the total derivatives. 

Note that this is a general form of the diffusion equation in an inhomogeneous anisotropic media. Generally speak- 

ing, the ADRE is nonlinear due to the dependence of the diffusivity ̂ D ( x , u ) and the function R ( x , u , u x , u y ) on the 

u ( x ) and its derivatives. However, firstly, we consider linear problems with simplifying assumptions ̂ D ( x , u ) = ̂

 D ( x ) and 

R 
(
x , u, u x , u y 

)
= c ( x ) u − f ( x ) . It follows: 

D 11 ( x ) 
∂ 2 u 

∂x 2 
1 

+ 2 D 12 ( x ) 
∂ 2 u 

∂ x 1 ∂ x 2 
+ D 22 ( x ) 

∂ 2 u 

∂x 2 
2 

+ 

(
∂D 11 ( x ) 

∂x 1 
+ 

∂D 12 ( x ) 

∂x 2 
− a 1 ( x ) 

)
∂u 

∂x 1 
+ 

(
∂D 12 ( x ) 

∂x 1 
+ 

∂D 22 ( x ) 

∂x 2 
− a 2 ( x ) 

)
∂u 

∂x 2 

+ [ c ( x ) − div a ( x ) ] u = f ( x ) , (4) 

where D ij ( x ), a 1 ( x ), a 2 ( x ), c ( x ), and f ( x ) are given functions in the solution domain �. The goal is to develop an effective 

numerical technique for solving Eq. (3) or its linearized version Eq. (4) in geometrically complex regions. The following 

physically reasonable boundary conditions are prescribed for considered problems: the Dirichlet boundary condition 

u ( x ) = g 1 ( x ) , x ∈ �1 , (5) 

and the Neumann boundary condition for the boundary flux q n ( x ) 

q n ( x ) = g 2 ( x ) , x ∈ �2 , (6) 

where �1 ∩ �2 = ∅ , and �1 ∪ �2 = ∂�. The normal component of the flux on the boundary with the unit outward normal 

vector n = ( n 1 , n 2 ) is of the following form: 

q n = −
(

D 11 ( x , u ) 
∂u 

∂x 1 
+ D 12 ( x , u ) 

∂u 

∂x 2 

)
n 1 −

(
D 21 ( x , u ) 

∂u 

∂x 1 
+ D 22 ( x , u ) 

∂u 

∂x 2 

)
n 2 . (7) 

ADRE type equations model a large number of physical phenomena in various scientific disciplines and various branches 

of engineering, such as modeling groundwater flow [1,2] , the intrusion of saltwater into freshwater aquifers [3] , the spread 

of pollutants in rivers and streams [4] , and the dispersion of dissolved material in estuaries and coastal seas [5] . The 

Eq. (3) is a second order elliptic equation of a general form with variable coefficients defined in an arbitrary domain �⊂ R 2 . 

In many of these problems analytical solutions are limited to only a few idealized cases such as simplifying restriction 

of uniform flow. As a result, it constitutes a major focus for the development of numerical methods such as the finite 

difference method and the finite element method [6–8] . The existence of nonlinear terms and anisotropic feature makes 

numerical methods more difficult to form. In the last two decades there has been an increasing interest in the idea of 

meshless or mesh-free numerical methods for solving partial differential equations (PDEs). A meshless method developed by 

combining the virtual boundary collocation method with RBF approximation and the analog equation method is proposed 

by Wang et al. [9] for solving steady-state heat conduction problems with arbitrarily spatially varying thermal conductivity 

in isotropic and anisotropic materials. The singular boundary method (SBM) proposed by Chen and his collaborators 
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