Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Two lower bounds for generalized 3-connectivity of Cartesian product graphs

^a Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China ^b School Science and Mathematics & Laboratory for Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China

ARTICLE INFO

MSC: 05C76 05C40

Keywords: Connectivity Generalized connectivity Cartesian product

ABSTRACT

The generalized *k*-connectivity $\kappa_k(G)$ of a graph *G*, which was introduced by Chartrand et al. (1984) is a generalization of the concept of vertex connectivity. Let *G* and *H* be non-trivial connected graphs. Recently, Li et al. (2012) gave a lower bound for the generalized 3-connectivity of the Cartesian product graph $G \Box H$ and proposed a conjecture for the case that *H* is 3-connected. In this paper, we give two different forms of lower bounds for the generalized 3-connectivity of Cartesian product graphs. The first lower bound is stronger than theirs, and the second confirms their conjecture.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

All graphs in this paper are undirected, finite and simple. We refer to the book [1] for graph theoretic notations and terminology not described here. The generalized connectivity of a graph G, which was introduced by Chartrand et al. [2], is a natural generalization of the concept of vertex connectivity.

A tree *T* is called an *S*-tree if $S \subseteq V(T)$. A family of *S*-trees $T_1, T_2, ..., T_r$ are internally disjoint if $E(T_i) \cap E(T_j) = \phi$ and $V(T_i) \cap V(T_j) = S$ for any pair of integers *i* and *j*, where $1 \le i < j \le r$. We denote by $\kappa(S)$ the greatest number of internally disjoint *S*-trees. For an integer *k* with $2 \le k \le v(G)$, the generalized *k*-connectivity $\kappa_k(G)$ are defined to be the least value of $\kappa(S)$ when *S* runs over all *k*-subsets of V(G). Clearly, when k = 2, $\kappa_2(G) = \kappa(G)$.

In addition to being a natural combinatorial notation, the generalized connectivity can be motivated by its interesting interpretation in practice. For example, suppose that *G* represents a network. If one considers to connect a pair of vertices of *G*, then a path is used to connect them. However, if one wants to connect a set *S* of vertices of *G* with $|S| \ge 3$, then a tree has to be used to connect them. This kind of tree with minimum order for connecting a set of vertices is usually called Steiner tree, and popularly used in the physical design of VLSI, see [17]. Usually, one wants to consider how tough a network can be, for the connection of a set of vertices. Then, the number of totally independent ways to connect them is a measure for this purpose. The generalized *k*-connectivity can serve for measuring the capability of a network *G* to connect any *k* vertices in *G*.

Determining $\kappa_k(G)$ for most graphs is a difficult problem. In [4], Li et al. derived that for any fixed integer $k \ge 2$, given a graph *G* and a subset *S* of *V*(*G*), deciding whether there are *k* internally disjoint trees connecting *S*, namely deciding whether $\kappa(S) \ge k$ is NP-complete. The exact value of $\kappa_k(G)$ is known for only a small class of graphs. Examples are complete graphs [3], complete bipartite graphs [5], complete equipartition 3-partite graphs [6], star graphs and bubble-sort graphs

* Corresponding author. E-mail addresses: gaoh1118@yeah.net (H. Gao), bjlv@bnu.edu.cn (B. Lv), wangks@bnu.edu.cn (K. Wang).

https://doi.org/10.1016/j.amc.2018.04.007 0096-3003/© 2018 Elsevier Inc. All rights reserved.

[16], Cayley graphs generated by trees and cycles [15] and connected Cayley graphs on Abelian groups with small degrees [18]. Upper bounds and lower bounds of generalized connectivity of a graph have been investigated by Li et al. [9,10,14] and Li and Mao [12]. And Li et al. investigated extremal problems in [7,8]. We refer the readers to [13] for more results. In [9], Li et al. studied the generalized 3-connectivity of Cartesian product graphs and showed the following result.

Theorem 1.1 [9]. Let G and H be connected graphs such that $\kappa_3(G) > \kappa_3(H)$. The following assertions hold:

(i) if $\kappa(G) = \kappa_3(G)$, then $\kappa_3(G \Box H) \ge \kappa_3(G) + \kappa_3(H) - 1$. Moreover, the bound is sharp;

(ii) if $\kappa(G) > \kappa_3(G)$, then $\kappa_3(G \square H) \ge \kappa_3(G) + \kappa_3(H)$. Moreover, the bound is sharp.

Later in [11], Li et al. gave a better result when *H* becomes a 2-connected graph.

Theorem 1.2 [11]. Let G be a nontrivial connected graph, and let H be a 2-connected graph. The following assertions hold:

(i) if $\kappa(G) = \kappa_3(G)$, then $\kappa_3(G \Box H) \ge \kappa_3(G) + 1$. Moreover, the bound is sharp;

(ii) if $\kappa(G) > \kappa_3(G)$, then $\kappa_3(G \Box H) \ge \kappa_3(G) + 2$. Moreover, the bound is sharp.

Also in [11], Li et al. proposed a conjecture as follows:

Conjecture 1.3 [11]. Let G be a nontrivial connected graph, and let H be a 3-connected graph. The following assertions hold:

(i) if $\kappa(G) = \kappa_3(G)$, then $\kappa_3(G \Box H) \ge \kappa_3(G) + 2$. Moreover, the bound is sharp;

(ii) if $\kappa(G) > \kappa_3(G)$, then $\kappa_3(G \Box H) \ge \kappa_3(G) + 3$. Moreover, the bound is sharp.

In this paper, we give two different forms of lower bounds for generalized 3-connectivity of Cartesian product graphs.

Theorem 1.4. Let G and H be nontrivial connected graphs. Then $\kappa_3(G \Box H) \ge \min\{\kappa_3(G) + \delta(H), \kappa_3(H) + \delta(G), \kappa(G) + \kappa(H) - \delta(G)\}$ 1}.

Theorem 1.5. Let G be a nontrivial connected graph, and let H be an l-connected graph. The following assertions hold:

- (i) if $\kappa(G) = \kappa_3(G)$ and 1 < l < 7, then $\kappa_3(G \Box H) > \kappa_3(G) + l 1$. Moreover, the bound is sharp;
- (ii) if $\kappa(G) > \kappa_3(G)$ and 1 < l < 9, then $\kappa_3(G \Box H) > \kappa_3(G) + l$. Moreover, the bound is sharp.

The paper is organized as follows. In Section 2, we introduce some definitions and notations. In Section 3, we give a Proof of theorem 1.4, which induces Theorems 1.1 and 1.2, and confirms Conjecture 1.3. In Section 4, we discuss the problem which number the connectivity of H can be such that Conjecture 1.3 still holds. And Theorem 1.5 is our answer and there are counterexamples when $l \ge 8$ for $\kappa(G) = \kappa_3(G)$ and $l \ge 10$ for $\kappa(G) > \kappa_3(G)$.

2. Preliminaries

Let *G* and *H* be two graphs with $V(G) = \{u_1, u_2, \dots, u_n\}$ and $V(H) = \{v_1, v_2, \dots, v_m\}$, respectively. Let $\kappa(G) = k$, $\kappa(H) = l$, $\delta(G) = \delta_1$, and $\delta(H) = \delta_2$. And the discussion below is always based on the hypotheses.

Recall that the Cartesian product (also called the square product) of two graphs G and H, written as $G \square H$, is the graph with vertex set $V(G) \times V(H)$, in which two vertices (u, v) and (u', v') are adjacent if and only if u = u' and $vv' \in E(H)$, or v = v' and $uu' \in E(G)$. By starting with a disjoint union of two graphs G and H and adding edges joining every vertex of G to every vertex of *H*, one obtains the join of *G* and *H*, denoted by $G \lor H$.

For any subgraph $G_1 \subseteq G$, we use $G_1^{v_j}$ to denote the subgraph of $G \square H$ with vertex set $\{(u_i, v_j) | u_i \in V(G_1)\}$ and edge set $\{(u_{i_1}, v_i)|u_{i_2}, v_i)|u_{i_1}u_{i_2} \in E(G_1)\}$. Similarly, for any subgraph $H_1 \subseteq H$, we use $H_1^{u_i}$ to denote the subgraph of $G \Box H$ with vertex set $\{(u_i, v_j) | v_j \in V(H_1)\}$ and edge set $\{(u_i, v_{j_1})(u_i, v_{j_2}) | v_{j_1}v_{j_2} \in E(H_1)\}$. Clearly, $G_1^{v_j} \cong G_1, H_1^{u_i} \cong H_1$.

Let $x \in V(G)$ and $Y \subseteq V(G)$. An (x, Y)-path is a path which starts at x, ends at a vertex of Y, and whose internal vertices do not belong to Y. A family of k internally disjoint (x, Y)-paths whose terminal vertices are distinct is referred to as a k-fan from x to Y.

For some $1 \le t \le \lfloor \frac{k}{2} \rfloor$ and $s \ge t + 1$, in G, a family $\{P_1, P_2, \dots, P_s\}$ of s u_1u_2 -paths is called an (s, t)-original-path-bundle with respect to (u_1, u_2, u_3) , if u_3 are on t paths P_1, \dots, P_t , and the s paths have no internal vertices in common except u_3 , as shown in Fig. 1.a. If there is not only an (s, t)-original-path-bundle $\{P'_1, P'_2, \ldots, P'_s\}$ with respect (u_1, u_2, u_3) , but also a family $\{M_1, M_2, \ldots, M_{k-2t}\}$ of k - 2t internally disjoint (u_3, X) -paths avoiding the vertices in $V(P'_1 \cup \ldots \cup P'_t) - \{u_1, u_2, u_3\}$, where $X = V(P'_{t+1} \cup \ldots \cup P'_s)$, then we call the family of paths $\{P'_1, P'_2, \ldots, P'_s\} \cup \{M_1, M_2, \ldots, M_{k-2t}\}$ an (s, t)-reduced-path-bundle with respect to (u_1, u_2, u_3) , as shown in Fig. 1.b.

In order to show our main results, we need the following theorems and lemmas.

Lemma 2.1 [1, Fan Lemma]. Let G be a k-connected graph, x be a vertex of G, and $Y \subseteq V - \{x\}$ be a set of at least k vertices of G. Then there exists a k-fan in G from x to Y.

Theorem 2.2 [1, p.219]. Let S be a set of three pairwise-nonadjacent edges in a simple 3-connected graph G. Then there is a cycle in G containing all three edges of S unless S is an edge cut of G.

Download English Version:

https://daneshyari.com/en/article/8900618

Download Persian Version:

https://daneshyari.com/article/8900618

Daneshyari.com