Two lower bounds for generalized 3-connectivity of Cartesian product graphs

Hui Gao ${ }^{\text {a,* }}$, Benjian Lv $^{\text {b }}$, Kaishun Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China
${ }^{\mathrm{b}}$ School Science and Mathematics \& Laboratory for Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China

ARTICLE INFO

MSC:

05 C 76
05C40

Keywords:

Connectivity
Generalized connectivity
Cartesian product

Abstract

The generalized k-connectivity $\kappa_{k}(G)$ of a graph G, which was introduced by Chartrand et al. (1984) is a generalization of the concept of vertex connectivity. Let G and H be nontrivial connected graphs. Recently, Li et al. (2012) gave a lower bound for the generalized 3 -connectivity of the Cartesian product graph $G \square H$ and proposed a conjecture for the case that H is 3 -connected. In this paper, we give two different forms of lower bounds for the generalized 3 -connectivity of Cartesian product graphs. The first lower bound is stronger than theirs, and the second confirms their conjecture.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

All graphs in this paper are undirected, finite and simple. We refer to the book [1] for graph theoretic notations and terminology not described here. The generalized connectivity of a graph G, which was introduced by Chartrand et al. [2], is a natural generalization of the concept of vertex connectivity.

A tree T is called an S-tree if $S \subseteq V(T)$. A family of S-trees $T_{1}, T_{2}, \ldots, T_{r}$ are internally disjoint if $E\left(T_{i}\right) \cap E\left(T_{j}\right)=\phi$ and $V\left(T_{i}\right) \cap$ $V\left(T_{j}\right)=S$ for any pair of integers i and j, where $1 \leq i<j \leq r$. We denote by $\kappa(S)$ the greatest number of internally disjoint S-trees. For an integer k with $2 \leq k \leq v(G)$, the generalized k-connectivity $\kappa_{k}(G)$ are defined to be the least value of $\kappa(S)$ when S runs over all k-subsets of $V(G)$. Clearly, when $k=2, \kappa_{2}(G)=\kappa(G)$.

In addition to being a natural combinatorial notation, the generalized connectivity can be motivated by its interesting interpretation in practice. For example, suppose that G represents a network. If one considers to connect a pair of vertices of G, then a path is used to connect them. However, if one wants to connect a set S of vertices of G with $|S| \geq 3$, then a tree has to be used to connect them. This kind of tree with minimum order for connecting a set of vertices is usually called Steiner tree, and popularly used in the physical design of VLSI, see [17]. Usually, one wants to consider how tough a network can be, for the connection of a set of vertices. Then, the number of totally independent ways to connect them is a measure for this purpose. The generalized k-connectivity can serve for measuring the capability of a network G to connect any k vertices in G.

Determining $\kappa_{k}(G)$ for most graphs is a difficult problem. In [4], Li et al. derived that for any fixed integer $k \geq 2$, given a graph G and a subset S of $V(G)$, deciding whether there are k internally disjoint trees connecting S, namely deciding whether $\kappa(S) \geq k$ is NP-complete. The exact value of $\kappa_{k}(G)$ is known for only a small class of graphs. Examples are complete graphs [3], complete bipartite graphs [5], complete equipartition 3-partite graphs [6], star graphs and bubble-sort graphs

[^0][16], Cayley graphs generated by trees and cycles [15] and connected Cayley graphs on Abelian groups with small degrees [18]. Upper bounds and lower bounds of generalized connectivity of a graph have been investigated by Li et al. [9,10,14] and Li and Mao [12]. And Li et al. investigated extremal problems in [7,8]. We refer the readers to [13] for more results.

In [9], Li et al. studied the generalized 3-connectivity of Cartesian product graphs and showed the following result.
Theorem 1.1 [9]. Let G and H be connected graphs such that $\kappa_{3}(G) \geq \kappa_{3}(H)$. The following assertions hold:
(i) if $\kappa(G)=\kappa_{3}(G)$, then $\kappa_{3}(G \square H) \geq \kappa_{3}(G)+\kappa_{3}(H)-1$. Moreover, the bound is sharp;
(ii) if $\kappa(G)>\kappa_{3}(G)$, then $\kappa_{3}(G \square H) \geq \kappa_{3}(G)+\kappa_{3}(H)$. Moreover, the bound is sharp.

Later in [11], Li et al. gave a better result when H becomes a 2-connected graph.
Theorem 1.2 [11]. Let G be a nontrivial connected graph, and let H be a 2-connected graph. The following assertions hold:
(i) if $\kappa(G)=\kappa_{3}(G)$, then $\kappa_{3}(G \square H) \geq \kappa_{3}(G)+1$. Moreover, the bound is sharp;
(ii) if $\kappa(G)>\kappa_{3}(G)$, then $\kappa_{3}(G \square H) \geq \kappa_{3}(G)+2$. Moreover, the bound is sharp.

Also in [11], Li et al. proposed a conjecture as follows:
Conjecture 1.3 [11]. Let G be a nontrivial connected graph, and let H be a 3-connected graph. The following assertions hold:
(i) if $\kappa(G)=\kappa_{3}(G)$, then $\kappa_{3}(G \square H) \geq \kappa_{3}(G)+2$. Moreover, the bound is sharp;
(ii) if $\kappa(G)>\kappa_{3}(G)$, then $\kappa_{3}(G \square H) \geq \kappa_{3}(G)+3$. Moreover, the bound is sharp.

In this paper, we give two different forms of lower bounds for generalized 3-connectivity of Cartesian product graphs.
Theorem 1.4. Let G and H be nontrivial connected graphs. Then $\kappa_{3}(G \square H) \geq \min \left\{\kappa_{3}(G)+\delta(H), \kappa_{3}(H)+\delta(G), \kappa(G)+\kappa(H)-\right.$ $1\}$.

Theorem 1.5. Let G be a nontrivial connected graph, and let H be an l-connected graph. The following assertions hold:
(i) if $\kappa(G)=\kappa_{3}(G)$ and $1 \leq l \leq 7$, then $\kappa_{3}(G \square H) \geq \kappa_{3}(G)+l-1$. Moreover, the bound is sharp;
(ii) if $\kappa(G)>\kappa_{3}(G)$ and $1 \leq l \leq 9$, then $\kappa_{3}(G \square H) \geq \kappa_{3}(G)+l$. Moreover, the bound is sharp.

The paper is organized as follows. In Section 2, we introduce some definitions and notations. In Section 3, we give a Proof of theorem 1.4, which induces Theorems 1.1 and 1.2, and confirms Conjecture 1.3. In Section 4, we discuss the problem which number the connectivity of H can be such that Conjecture 1.3 still holds. And Theorem 1.5 is our answer and there are counterexamples when $l \geq 8$ for $\kappa(G)=\kappa_{3}(G)$ and $l \geq 10$ for $\kappa(G)>\kappa_{3}(G)$.

2. Preliminaries

Let G and H be two graphs with $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, respectively. Let $\kappa(G)=k, \kappa(H)=l$, $\delta(G)=\delta_{1}$, and $\delta(H)=\delta_{2}$. And the discussion below is always based on the hypotheses.

Recall that the Cartesian product (also called the square product) of two graphs G and H, written as $G \square H$, is the graph with vertex set $V(G) \times V(H)$, in which two vertices (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are adjacent if and only if $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, or $v=v^{\prime}$ and $u u^{\prime} \in E(G)$. By starting with a disjoint union of two graphs G and H and adding edges joining every vertex of G to every vertex of H, one obtains the join of G and H, denoted by $G \vee H$.

For any subgraph $G_{1} \subseteq G$, we use $G_{1}^{v_{j}}$ to denote the subgraph of $G \square H$ with vertex set $\left\{\left(u_{i}, v_{j}\right) \mid u_{i} \in V\left(G_{1}\right)\right\}$ and edge set $\left\{\left(u_{i_{1}}, v_{j}\right)\left(u_{i_{2}}, v_{j}\right) \mid u_{i_{1}} u_{i_{2}} \in E\left(G_{1}\right)\right\}$. Similarly, for any subgraph $H_{1} \subseteq H$, we use $H_{1}^{u_{i}}$ to denote the subgraph of $G \square H$ with vertex set $\left\{\left(u_{i}, v_{j}\right) \mid v_{j} \in V\left(H_{1}\right)\right\}$ and edge set $\left\{\left(u_{i}, v_{j_{1}}\right)\left(u_{i}, v_{j_{2}}\right) \mid v_{j_{1}} v_{j_{2}} \in E\left(H_{1}\right)\right\}$. Clearly, $G_{1}^{v_{j}} \cong G_{1}, H_{1}^{u_{i}} \cong H_{1}$.

Let $x \in V(G)$ and $Y \subseteq V(G)$. An (x, Y)-path is a path which starts at x, ends at a vertex of Y, and whose internal vertices do not belong to Y. A family of k internally disjoint (x, Y)-paths whose terminal vertices are distinct is referred to as a k-fan from x to Y.

For some $1 \leq t \leq\left\lfloor\frac{k}{2}\right\rfloor$ and $s \geq t+1$, in G, a family $\left\{P_{1}, P_{2}, \ldots, P_{s}\right\}$ of $s u_{1} u_{2}$-paths is called an (s, t)-original-path-bundle with respect to $\left(u_{1}, u_{2}, u_{3}\right)$, if u_{3} are on t paths P_{1}, \ldots, P_{t}, and the s paths have no internal vertices in common except u_{3}, as shown in Fig. 1.a. If there is not only an (s, t)-original-path-bundle $\left\{P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{s}^{\prime}\right\}$ with respect (u_{1}, u_{2}, u_{3}), but also a family $\left\{M_{1}, M_{2}, \ldots, M_{k-2 t}\right\}$ of $k-2 t$ internally disjoint $\left(u_{3}, X\right)$-paths avoiding the vertices in $V\left(P_{1}^{\prime} \cup \ldots \cup P_{t}^{\prime}\right)-\left\{u_{1}, u_{2}, u_{3}\right\}$, where $X=V\left(P_{t+1}^{\prime} \cup \ldots \cup P_{s}^{\prime}\right)$, then we call the family of paths $\left\{P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{s}^{\prime}\right\} \cup\left\{M_{1}, M_{2}, \ldots, M_{k-2 t}\right\}$ an (s,t)-reduced-path-bundle with respect to $\left(u_{1}, u_{2}, u_{3}\right)$, as shown in Fig. 1.b.

In order to show our main results, we need the following theorems and lemmas.
Lemma 2.1 [1, Fan Lemma]. Let G be a k-connected graph, x be a vertex of G, and $Y \subseteq V-\{x\}$ be a set of at least k vertices of G. Then there exists a k-fan in G from x to Y.

Theorem 2.2 [1, p.219]. Let S be a set of three pairwise-nonadjacent edges in a simple 3-connected graph G. Then there is a cycle in G containing all three edges of S unless S is an edge cut of G.

https://daneshyari.com/en/article/8900618

Download Persian Version:

https://daneshyari.com/article/8900618

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: gaoh1118@yeah.net (H. Gao), bjlv@bnu.edu.cn (B. Lv), wangks@bnu.edu.cn (K. Wang).

