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a b s t r a c t 

The generalized k -connectivity κk ( G ) of a graph G , which was introduced by Chartrand 

et al. (1984) is a generalization of the concept of vertex connectivity. Let G and H be non- 

trivial connected graphs. Recently, Li et al. (2012) gave a lower bound for the generalized 

3-connectivity of the Cartesian product graph G �H and proposed a conjecture for the case 

that H is 3-connected. In this paper, we give two different forms of lower bounds for the 

generalized 3-connectivity of Cartesian product graphs. The first lower bound is stronger 

than theirs, and the second confirms their conjecture. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

All graphs in this paper are undirected, finite and simple. We refer to the book [1] for graph theoretic notations and 

terminology not described here. The generalized connectivity of a graph G, which was introduced by Chartrand et al. [2] , is 

a natural generalization of the concept of vertex connectivity. 

A tree T is called an S -tree if S ⊆V ( T ). A family of S -trees T 1 , T 2 ,…, T r are internally disjoint if E(T i ) ∩ E(T j ) = φ and V (T i ) ∩ 

V (T j ) = S for any pair of integers i and j , where 1 ≤ i < j ≤ r . We denote by κ( S ) the greatest number of internally disjoint 

S -trees. For an integer k with 2 ≤ k ≤ v (G ) , the generalized k -connectivity κk ( G ) are defined to be the least value of κ( S ) 

when S runs over all k -subsets of V ( G ). Clearly, when k = 2 , κ2 (G ) = κ(G ) . 

In addition to being a natural combinatorial notation, the generalized connectivity can be motivated by its interesting 

interpretation in practice. For example, suppose that G represents a network. If one considers to connect a pair of vertices 

of G , then a path is used to connect them. However, if one wants to connect a set S of vertices of G with | S | ≥ 3, then a 

tree has to be used to connect them. This kind of tree with minimum order for connecting a set of vertices is usually called 

Steiner tree, and popularly used in the physical design of VLSI, see [17] . Usually, one wants to consider how tough a network 

can be, for the connection of a set of vertices. Then, the number of totally independent ways to connect them is a measure 

for this purpose. The generalized k -connectivity can serve for measuring the capability of a network G to connect any k 

vertices in G . 

Determining κk ( G ) for most graphs is a difficult problem. In [4] , Li et al. derived that for any fixed integer k ≥ 2, given 

a graph G and a subset S of V ( G ), deciding whether there are k internally disjoint trees connecting S , namely deciding 

whether κ( S ) ≥ k is NP-complete. The exact value of κk ( G ) is known for only a small class of graphs. Examples are complete 

graphs [3] , complete bipartite graphs [5] , complete equipartition 3-partite graphs [6] , star graphs and bubble-sort graphs 
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[16] , Cayley graphs generated by trees and cycles [15] and connected Cayley graphs on Abelian groups with small degrees 

[18] . Upper bounds and lower bounds of generalized connectivity of a graph have been investigated by Li et al. [9,10,14] and 

Li and Mao [12] . And Li et al. investigated extremal problems in [7,8] . We refer the readers to [13] for more results. 

In [9] , Li et al. studied the generalized 3-connectivity of Cartesian product graphs and showed the following result. 

Theorem 1.1 [9] . Let G and H be connected graphs such that κ3 ( G ) ≥κ3 ( H ) . The following assertions hold: 

(i) if κ(G ) = κ3 (G ) , then κ3 (G �H) ≥ κ3 (G ) + κ3 (H) − 1 . Moreover, the bound is sharp; 

(ii) if κ( G ) > κ3 ( G ), then κ3 (G �H) ≥ κ3 (G ) + κ3 (H) . Moreover, the bound is sharp. 

Later in [11] , Li et al. gave a better result when H becomes a 2-connected graph. 

Theorem 1.2 [11] . Let G be a nontrivial connected graph, and let H be a 2-connected graph. The following assertions hold: 

(i) if κ(G ) = κ3 (G ) , then κ3 (G �H) ≥ κ3 (G ) + 1 . Moreover, the bound is sharp; 

(ii) if κ( G ) > κ3 ( G ), then κ3 (G �H) ≥ κ3 (G ) + 2 . Moreover, the bound is sharp. 

Also in [11] , Li et al. proposed a conjecture as follows: 

Conjecture 1.3 [11] . Let G be a nontrivial connected graph, and let H be a 3-connected graph. The following assertions hold: 

(i) if κ(G ) = κ3 (G ) , then κ3 (G �H) ≥ κ3 (G ) + 2 . Moreover, the bound is sharp; 

(ii) if κ( G ) > κ3 ( G ), then κ3 (G �H) ≥ κ3 (G ) + 3 . Moreover, the bound is sharp. 

In this paper, we give two different forms of lower bounds for generalized 3-connectivity of Cartesian product graphs. 

Theorem 1.4. Let G and H be nontrivial connected graphs. Then κ3 (G �H) ≥ min { κ3 (G ) + δ(H ) , κ3 (H ) + δ(G ) , κ(G ) + κ(H) −
1 } . 
Theorem 1.5. Let G be a nontrivial connected graph, and let H be an l-connected graph. The following assertions hold: 

(i) if κ(G ) = κ3 (G ) and 1 ≤ l ≤ 7, then κ3 (G �H) ≥ κ3 (G ) + l − 1 . Moreover, the bound is sharp; 

(ii) if κ( G ) > κ3 ( G ) and 1 ≤ l ≤ 9, then κ3 (G �H) ≥ κ3 (G ) + l. Moreover, the bound is sharp. 

The paper is organized as follows. In Section 2 , we introduce some definitions and notations. In Section 3 , we give a 

Proof of theorem 1.4 , which induces Theorems 1.1 and 1.2 , and confirms Conjecture 1.3 . In Section 4 , we discuss the problem 

which number the connectivity of H can be such that Conjecture 1.3 still holds. And Theorem 1.5 is our answer and there 

are counterexamples when l ≥ 8 for κ(G ) = κ3 (G ) and l ≥ 10 for κ( G ) > κ3 ( G ). 

2. Preliminaries 

Let G and H be two graphs with V (G ) = { u 1 , u 2 , . . . , u n } and V (H) = { v 1 , v 2 , . . . , v m 

} , respectively. Let κ(G ) = k, κ(H) = l, 

δ(G ) = δ1 , and δ(H) = δ2 . And the discussion below is always based on the hypotheses. 

Recall that the Cartesian product (also called the square product) of two graphs G and H , written as G �H , is the graph 

with vertex set V ( G ) × V ( H ), in which two vertices (u, v ) and (u ′ , v ′ ) are adjacent if and only if u = u ′ and vv ′ ∈ E(H) , or 

v = v ′ and uu ′ ∈ E ( G ). By starting with a disjoint union of two graphs G and H and adding edges joining every vertex of G to 

every vertex of H , one obtains the join of G and H , denoted by G ∨ H . 

For any subgraph G 1 ⊆G , we use G 

v j 
1 

to denote the subgraph of G �H with vertex set { (u i , v j ) | u i ∈ V (G 1 ) } and edge set 

{ (u i 1 , v j )(u i 2 , v j ) | u i 1 u i 2 ∈ E(G 1 ) } . Similarly, for any subgraph H 1 ⊆H , we use H 

u i 
1 

to denote the subgraph of G �H with vertex 

set { (u i , v j ) | v j ∈ V (H 1 ) } and edge set { (u i , v j 1 )(u i , v j 2 ) | v j 1 v j 2 ∈ E(H 1 ) } . Clearly, G 

v j 
1 

∼= 

G 1 , H 

u i 
1 

∼= 

H 1 . 

Let x ∈ V ( G ) and Y ⊆V ( G ). An ( x , Y )-path is a path which starts at x, ends at a vertex of Y , and whose internal vertices do 

not belong to Y . A family of k internally disjoint ( x , Y )-paths whose terminal vertices are distinct is referred to as a k -fan 

from x to Y . 

For some 1 ≤ t ≤ � k 2 � and s ≥ t + 1 , in G , a family { P 1 , P 2 , . . . , P s } of s u 1 u 2 -paths is called an ( s , t )-original-path-bundle 

with respect to ( u 1 , u 2 , u 3 ), if u 3 are on t paths P 1 ,…, P t , and the s paths have no internal vertices in common except u 3 , as 

shown in Fig. 1 .a. If there is not only an ( s , t )-original-path-bundle { P ′ 1 , P ′ 2 , . . . , P ′ s } with respect ( u 1 , u 2 , u 3 ), but also a family 

{ M 1 , M 2 , . . . , M k −2 t } of k − 2 t internally disjoint ( u 3 , X )-paths avoiding the vertices in V (P 
′ 
1 

∪ . . . ∪ P 
′ 
t ) − { u 1 , u 2 , u 3 } , where 

X = V (P 
′ 
t+1 

∪ . . . ∪ P 
′ 
s ) , then we call the family of paths { P ′ 

1 
, P 

′ 
2 
, . . . , P 

′ 
s } ∪ { M 1 , M 2 , . . . , M k −2 t } an ( s , t )-reduced-path-bundle 

with respect to ( u 1 , u 2 , u 3 ), as shown in Fig. 1 .b. 

In order to show our main results, we need the following theorems and lemmas. 

Lemma 2.1 [1 , Fan Lemma] . Let G be a k-connected graph, x be a vertex of G , and Y ⊆ V − { x } be a set of at least k vertices of 

G. Then there exists a k-fan in G from x to Y. 

Theorem 2.2 [1 , p.219] . Let S be a set of three pairwise-nonadjacent edges in a simple 3-connected graph G. Then there is a 

cycle in G containing all three edges of S unless S is an edge cut of G. 
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