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1. Introduction

The main purpose of this paper is to consider the existence of periodic solutions for the following problem
E(@p(u(t))) = VF(t,y(r)), ae. tel0,T] 1)
u(0) —u(T) =u0) —u(T)=0
where p>1, ®,(x) = |x|P~2x, T>0 and F : [0, T] x RN — R satisfies the following condition:

(A) Kt, x) is measurable in t for every x e RN and continuous differential in x for a.e. t<[0, T], and there exist a €
C(R*,Rt), b e L1([0, T]; Rt) such that
[F(t,x)| < a(|xDb(t),  |VF(t,x)| < a(|x|)b(t)
for all x e RN and a.e. t€]0, T].

Let ¢ defined by
T

1"
w(u)=5/0 |u(t)|Pdt+/0 F(t, u(t))dt.

It is clear that ¢ is continuous differentiable and weakly lower semicontinuous onWTl"’ as the sum of a convex continuous
function and of a weakly continuous one (see [1]), where

WP = {u: [0, T] - R"|u is absolutely continuous, u(0) = u(T) and i  L?([0, T]; R)}
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is a Hilbert space and is endowed with the norm

1

T T P
lul| = [fo Iu(t)lpdt+f0 |u<r>|Pdt}

for each u e er.p_ Moreover, we have

T
<¢'(u),v >=/0 [(u(®)|P2a(), v(t)) + (VF(t. u(t)), v(t))]dt
for all u,ve WT“’. It is well known that solutions of problem (1) correspond to the critical points of ¢.
For any u e WT“’, let i = %fOT u(t)dt and 1i(t) = u(t) — 4. It is easy to see that

lillo < T lillr  (Sobolev's inequality),

il <Tlull,  (Wirtinger's inequality)

for all u € W;*? and some positive constant C, where % + % = 1(see [1]).

When p = 2, problem (1) becomes the second order Hamiltonian systems. By using the variational methods, the existence
and multiplicity of periodic solutions for Hamiltonian systems have been extensively investigated, such as [1,2,3,4,5,8,9] and
the references therein. For the general case p > 1, there are not so many results. Motivated by results in [6,7,9], we obtain
some new existence results for problem (1) by using the least action principle.

2. Main results and proof

First, we recall a definition due to Wu and Tang [7]:
A function F : RN — R is said to be (A, u)-subconvex if

FA(x+y)) = w(FC) +F())

for some A, u >0 and all x, y € RN. A function is said to be y-subadditive if it is (1, y)-subconvex. A function is said to be
subadditive if it is 1-subadditive. The convex and subadditive functions are special cases of subconvex functions. However,
it is easy to show that the converse is not true. For example, set

F(x) = e + Gy In(1 + |x[?),
where p>1 and C, is sufficiently large. It follows that F is (1/2, 1)-subconvex but neither convex nor y-subadditive.

Lemma 2.1 (See [8]). In Sobolev space WT“’, forue WTl'p, |lu|| = oo if and only if

T b
<|a|p +/ Iu(t)|pdt) N,
0
Theorem 2.2. Let F(t,x) = F (t,x) + K (x), where F; and F, satisfy (A) and the following conditions:
(i) F1(t, ) is (pA, %)—subconvex for a.e. te[0, T], where A, u > % and p < pP=1AP;

ii) there exist constants 0 <1, < -, 5 € [0, +00) such that
TP

(VE®) - VEY).x-y) = -ri|x-y|" —ra|x -]
for all x,y e RN and a.e. t€|0, T);
(iii)
2 T T
7f F (t, phx)dt +/ F(x)dt — +o0
P Jo 0
as |x| — +oo.
Then problem (1) has at least one solution which minimizes ¢ on WT”’.
Proof. Let 8 = log;’i“), then 0 < B <p. For |x| > 1 there exists a positive integer n such that
n—1<logplx| <n.

Then it follows that |x|? > (pA)™D8 = (pu)"! and |x| <(pA)". Hence we have

- X o x NI NP g (r X B
F(t.x) —ﬁ(tpk(zpA + 2pk>> = puk (t, 2px) < = (p)"F (t, (ZpA)”) < pulx|Pagb(t)
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