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1. Introduction 

We are concerned with the following differential pencil L := L ( q 0 , q 1 , h , H ) defined by 

l(u ) := −u 

′′ + (q 0 (x ) + 2 ρq 1 (x )) u = ρ2 u, x ∈ (0 , π) (1.1) 

with boundary conditions 

U(u ) := u 

′ (0 , ρ) − hu (0 , ρ) = 0 , (1.2) 

V (u ) := u 

′ (π, ρ) + Hu (π, ρ) = 0 , (1.3) 

where h, H ∈ C , q r ( x ) is a complex function and q r ∈ W 

r 
1 

[0 , π ] , r = 0 , 1 . The inverse spectral problem for differential operators 

consists in recovering this operator from given spectral data (see [18,28] and other works). For h, H ∈ R and q r ( x ) is a real- 

valued function, Gasymov and Guseinov [6] showed that the differential pencil L has a discrete spectrum consisting of 

simple and real eigenvalues with finitely many exceptions, and the n th eigenfunction u ( x , ρn ) has exactly | n | − 1 nodes in 

the interval (0, π ) for sufficiently large | n |. Inverse nodal problems for this operator were studied in [3,10,24] , respectively. 

Inverse spectral problems for differential pencils were studied in [1,2,4,8,9,13,17,21,22,25,27] and other works, respectively. In 

particular, the results on the Weyl function were found in [1,4,8,9,27,28] . Later Guo and Wei [9] showed that the Gesztesy- 

Simon type theorem for (1.1) –(1.3) remains valid. We also note the results on inverse spectral problems for differential 

pencils with boundary conditions dependent on the spectral parameter in [1,2,21,22] and other works. To the best of my 

knowledge, the inverse spectral problem for (1.1) –(1.3) has been not completely solved by mixed spectral data, which means 
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partial information on potentials together with parts of two spectra. Therefore the following inverse problem is what we 

concern: 

IP-1: Given the potentials q r (x ) , r = 0 , 1 , on the interior arbitrary interval [ a , π ], 0 < a ≤π , we recover the potentials q r ( x ) 

on [0, a ] and the coefficients h , H 1 from parts of two spectra and H 0 (see below). 

The aim of this paper is to study the above IP-1 . More precisely, we show that the potentials on the whole interval and 

the coefficients h , H 1 can be uniquely determined by partial information on potentials, the coefficient H 0 and parts of two 

spectra, which is a generalization of the known results in [6,9] . In the present paper we develop the approach in [11] for 

differential pencils. 

If q 1 ( x ) ≡ 0, then the differential pencil L becomes a Sturm–Liouville boundary value problem. Inverse spectral problems 

for the Sturm–Liouville operator have been studied fairly completely (see [5,7,11,12,14,19,28] and the references therein). In 

particular, by using the methods of the Weyl m -function techniques and densities of zeros of a class of entire functions, Hor- 

vath [11] studied the inverse spectral theory for Schr ̈o dinger and Dirac operators with mixed spectral data. Inverse problems 

for differential operators with mixed spectral data were found in [7,9,11,12,20,25,26] and other works. 

2. Preliminaries 

Denote L ξ , ξ = 0 , 1 , a differential pencil of (1.1) –(1.3) with H ξ , H ξ ∈ C , instead of H in (1.3) and H 0 � = H 1 . Let functions 

C ( x , ρ), S ( x , ρ), ϕ( x , ρ) and ψ ξ ( x , ρ) be solutions of Eq. (1.1) under the initial conditions 

C(0 , ρ) = S ′ (0 , ρ) = ϕ(0 , ρ) = ψ ξ (π, ρ) = 1 , 

C ′ (0 , ρ) = S(0 , ρ) = U(ϕ) = V (ψ ξ ) = 0 . 

Clearly, U(ϕ) = V (ψ ξ ) = 0 . Denote τ = | Im ρ| . By virtue of [6,28] , for sufficiently large | ρ|, we have the following asymptotic 

formulae 

ϕ(x, ρ) = cos (ρx − Q 1 (x )) + O 

(
e τx 

ρ

)
, (2.1) 

ϕ 

′ (x, ρ) = −ρ sin (ρx − Q 1 (x )) + O(e τx ) (2.2) 

uniformly with respect to x ∈ [0, 1], where Q 1 (x ) := 

∫ x 
0 q 1 (t ) dt . Therefore we obtain the asymptotic formulae 

ψ ξ (x, ρ) = cos (ρ(π − x ) + Q 1 (x ) − Q 1 (π )) + O 

(
e τ (π−x ) 

ρ

)
, (2.3) 

ψ 

′ 
ξ (x, ρ) = ρ sin (ρ(π − x ) + Q 1 (x ) − Q 1 (π )) + O(e τ (π−x ) ) (2.4) 

uniformly with respect to x ∈ [0, π ]. The following formula is called the Green formula ∫ π

0 

(ψ ξ l(ϕ) − ϕl(ψ ξ )) = [ ψ ξ , ϕ](π, ρ) − [ ψ ξ , ϕ](0 , ρ) , 

where [ ψ ξ , ϕ](x, ρ) := ψ ξ (x, ρ) ϕ 

′ (x, ρ) − ψ 

′ 
ξ
(x, ρ) ϕ(x, ρ) is the Wronskian of ψ ξ and ϕ. Denote 

�ξ (ρ) := [ ψ ξ , ϕ](x, ρ) . 

It is easy to show that [ ψ ξ , ϕ]( x , ρ) does not depend on x . Then 

�ξ (ρ) = V (ϕ) = −U(ψ ξ ) , ξ = 0 , 1 , 

which is an entire function in ρ of order 1. Moreover we have 

�ξ (ρ) = −ρ sin (ρπ − Q 1 (π )) + O(e πτ ) 

for sufficiently large ρ . Denote 

A := {±0 , ±1 , . . . , ±n, . . . } . 
Let { ρn,ξ } n ∈ A , be the zeros (counting with multiplicities) of the entire function �ξ ( ρ), which coincides with the eigenvalues 

of the differential pencil L ξ and satisfy the asymptotic formula 

ρn,ξ = n + Q 1 (π ) + 

ω ξ

nπ
+ o 

(
1 

n 

)
(2.5) 

for sufficiently large | n |, where ω ξ = h + H ξ + 

1 
2 

∫ π
0 (q 0 (t) + q 2 

1 
(t))d t . For the solution ϕ( x , ρ) of Eq. (1.1) , the Weyl m - 

functions m −(x, ρ) is defined by 

m −(x, ρ) = −ϕ 

′ (x, ρ) 

ϕ(x, ρ) 
. 
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