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a b s t r a c t 

This paper presents a fully decentralized adaptive scheme to solve the open problem 

of complex projective synchronization (CPS) in drive-response fractional complex-variable 

networks (DRFCVNs). Based on local mismatch with the desired state and between coupled 

nodes, several novel fully decentralized fractional adaptive (FDFA) strategies are proposed 

to adjust both the feedback control strengths and the coupling weights. By employing Her- 

mitian form Lyapunov functionals and other fractional skills, some sufficient criteria are 

provided for CPS. Numerical simulation examples are finally employed to illustrate the ef- 

ficiency of the new synchronization strategies. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Over the past two decades, the existing research on complex networks is pervading mathematics, physics, system sci- 

ences, control sciences, nonlinear dynamics and so on [1] . For one thing, the interactions among neighboring nodes increase 

the complexity of collective dynamical behaviors, which stimulates deep insights into the topology and dynamics of com- 

plex networks. For another thing, the external signals to one node can affect its neighbors, subsequently causing the whole 

network to a synchronous or asynchronous state. As a significant cooperative behavior of the complex networks, synchro- 

nization keeps on fascinating the scholars owing to its broad applications ranging from smart grid and image encryption to 

secure communization [2,3] . Up to now, many well-known results on synchronization have been reported with respect to 

the synchronization manners, the network models, and the control techniques [2–5] . 

However, the above-mentioned researches on synchronization are based on the complex networks coupled with integer- 

order and real-variable dynamical systems. With the advancement of science and technology, high request for the network 

model and control method has been raised in more and more fields. By analogy with classical integer calculus, fractional 

calculus can offer an outstanding tool to model the real-world dynamical systems, which thus increases the degree of free- 

dom and reduces the robustness requirement of the controller [6] . Although the stability and synchronization analysis of 

fractional systems [6–15] has gained considerable popularity in control community, only recently has synchronization and 
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control of fractional dynamical networks [16–20] been started to attract increasing interests. Moreover, differential dynam- 

ical systems where the state variables are complex numbers can be used to describe a lot of practical problems. Recently, 

much ongoing work is also focused on stability and synchronization of complex-variable dynamical systems [21–24] or dy- 

namical networks [25–28] . Especially, as a new synchronization phenomenon in complex-variable systems, the CPS was first 

introduced by Wu and Fu [24] , which can be seen as an extension of projective synchronization (PS) [29,30] . In other words, 

in complex space, the response system can be asymptotically synchronized up to the projection of the drive system by the 

desired complex scaling factor. As the complex scaling factor is arbitrary and more unpredictable than the real scaling factor, 

the capacity of the transmitted message is doubled and the safety is greatly strengthened. In Ref. [26] , the adaptive feed- 

back control and the nodes-based adaptive techniques combined with pinning control strategy were used to achieve the CPS 

in a kind of complex-variable drive system and response networks. In [27,28] , the CPS in drive-response complex-variable 

networks with stochastic coupling and complex coupling are further investigated. 

During the developments in fractional and complex-variable chaotic systems, both of them gradually penetrate in to 

each other on the border of their interaction, and form a cross [31–35] . As a result, study on synchronization and control in 

fractional complex-variable chaotic systems or networks is of great theoretical and practical significance. However, there are 

very limited results to solve this open problem. 

In the existing literature, by introducing the adaptive control to the coupling weights, decentralized adaptive algorithms 

were developped to realize synchronization of complex networks [36–41] . Unlike the control methods without an adaptive 

strategy or the centralized adaptive strategies [42,43] , the coupling weights are adaptively updated on the basis of the local 

mismatch among coupled nodes. 

Generally, the results for traditional complex networks cannot be directly used in fractional cases. Inspired by Ref. [44–

46] , we introduce a fractional inequality for the Caputo derivative of a Hermitian form [47] . This result combined with other 

fractional techniques will provide with us an alternative approach to design adaptive controllers in the fractional complex- 

variable cases. By introducing FDFA strategy on coupling weights, we investigated the complete synchronization of diffu- 

sively coupled fractional complex-variable networks. Based on our work [47] , Ding et al. [48] studied the synchronization of 

fractional order complex-variable dynamical networks by designing the adaptive feedback controller. 

The main contributions of this study are summarized as follows. First, by extending the drive-response complex-variable 

networks to the fractional case, the model of DRFCVNs is proposed. Second, some novel FDFA strategies are designed to 

adjust both the feedback control strengths and coupling weights for the CPS. Third, by utilizing the fractional Lyapunov 

functional method and some new fractional skills, the Lyapunov-based adaptive control method for synchronization in DR- 

FCVNs has been developed. 

The paper is outlined as the following. Some basics of fractional calculus and the model of DRFCVNs are presented 

in Section 2 . In Section 3 , the design of the controllers and the synchronization criteria are given. Section 4 gives some 

numerical simulations to support the theoretical analysis. Finally, Section 5 concludes all of the results. 

This paper utilizes the standard mathematical notations. ‖ x ‖ = 

√ 

x H x represents the norm of a vector x . The matrix A ∈ 

C 

n ×n is Hermitian if A = A 

H . λmin ( A )( λmax ( A )) denotes the minimum (maximum) eigenvalue of the matrix A . Let x = x r + jx i , 

where j = 

√ −1 , x r and x i represent its real and imaginary parts, respectively. P ∈ C 

n ×n is a positive (negative) definite Her- 

mitian matrix and if P ∈ C 

n ×n > 0( P ∈ C 

n ×n < 0 ) . 

2. Preliminaries 

2.1. Fractional calculus [6] 

Definition 2.1. For 0 < α < 1, the unified expression for the fractional integral of an integrable function g ( t ) is 

t 0 
I αt g ( t ) = 

1 

�( α) 

∫ t 

t 0 

g ( τ ) 

( t − τ ) 
1 −α

dτ, (1) 

where t ≥ t 0 , the gamma function �(α) = 

∫ ∞ 

0 t α−1 exp ( −t ) dt , exp( • ) is exponential function, and t 0 
I αt denotes the frac- 

tional integral operator. 

Definition 2.2. For 0 < α < 1, the Caputo definition of fractional derivatives is defined by 

C 
t 0 

D 

α
t g ( t ) = 

1 

�( 1 − α) 

∫ t 

t 0 

1 

( t − τ ) 
α

dg ( τ ) 

dτ
dτ, (2) 

where t ≥ t 0 . Notice that, unless otherwise stated, we adopt α ∈ (0, 1) and t 0 = 0. 

Let us consider the Laplace transform related to the Caputo derivative 

L 

{
C 

t 0 
D 

α
t g ( t ) 

}
= s αG ( s ) − s α−1 g ( t 0 ) , (3) 

where s is complex and L{·} represents the Laplace transform operator. 

Property 2.3. 

t 0 
I αt 

C 
t 0 

D 

α
t g ( t ) = g ( t ) − g ( t 0 ) , ∀ t ≥ t 0 . (4) 
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