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This paper is concerned with strong convergence of a tamed theta scheme for neutral 

stochastic differential delay equations with one-sided Lipschitz drift. Strong convergence 

rate is revealed under a global one-sided Lipschitz condition, while for a local one-sided 

Lipschitz condition, the tamed theta scheme is modified to ensure the well-posedness of 

implicit numerical schemes, then we show the convergence of the numerical solutions. 
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1. Introduction 

Numerical analysis plays an important role in studying stochastic differential equations (SDEs) because most equations 

can not be solved explicitly. The most commonly used method for approximating SDEs is the explicit Euler–Maruyama 

(EM) method. There are a lot of literature concerning with the explicit EM scheme for all kinds of SDEs, e.g., Hairer et al. 

[1] , Maruyama [9] , Milstein [10] , and Kloeden and Platen [6] . Most of the early works on explicit EM scheme were about 

the SDEs with the globally Lipschitz continuous coefficients, since the explicit EM scheme solutions may not converge in 

the strong sense to the exact solutions with one-sided Lipschitz continuous and superlinearly growing drift coefficients. 

Moreover, Hutzenthaler et al. [3] pointed out that the absolute moments of the EM scheme at a finite time could diverge to 

infinity. In order to cope with these difficulties, Higham et al. [2] studied a split-step backward Euler method for nonlinear 

SDEs, they showed that the implicit EM scheme converged if the drift coefficient satisfied a one-sided Lipschitz condition 

and the diffusion coefficient was globally Lipschitz. Hutzenthaler et al. [4] proposed a tamed EM scheme in which the 

drift term is modified to guarantee the boundness of moments. Later, Sabanis [11,12] studied the strong convergence of 

the tamed EM scheme and extend the tamed EM scheme to SDEs with superlinearly growing drift and diffusion coefficients, 

respectively. Zong et al. [16] proposed a semi-tamed Euler scheme to solve the SDEs with the drift coefficient equipped with 

the Lipschitz continuous part and non-Lipschitz continuous part. Although additional computational effort is needed for 

implicit analysis, the implicit EM schemes have been showed better than the explicit EM scheme which converges strongly 

to the exact solution of SDEs under non-globally Lipschitz conditions. The implicit EM methods including the backward EM 
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scheme, the split-step backward EM scheme and the theta scheme have been extensively studied, for example, Mao and 

Szpruch [8] studied strong convergence and almost sure stability of the backward EM scheme and the theta scheme to SDEs 

with non-linear and non-Lipschitzian coefficients, to name a few. 

Recently, numerical analysis for neutral stochastic differential delay equations (NSDDEs) has also received a great deal of 

attention, see e.g., Lan and Yuan [7] , Wu and Mao [13] , Zhou [15] , Zong et al. [17] , Zong and Wu [18] , and the references 

therein. However, the existing literature are difficult to deal with one-sided Lipschitz and superlinearly drift. To fill the 

gap, in this paper, we are going to introduce a tamed theta scheme and discuss the strong convergence of this scheme for 

NSDDEs in which the drift coefficients are one-sided Lipschitz and superlinearly. 

The content of our paper is organized as follows. In Section 2 , we consider NSDDEs with global one-sided Lipschitz 

drift, the tamed theta scheme is introduced and strong convergence is investigated. We reveal that the tamed theta solution 

converges to the exact solution with order α (see (B1) below)under the global one-sided Lipschitz and the superlinearly 

growth condition. In Section 3 , the global one-sided Lipschitiz drift is replaced by the local one-sided Lipschitz drift, under 

which we show the convergence of the numerical solutions. In order to guarantee the well-posedness of the implicit tamed 

scheme, we impose a modified tamed theta scheme with a truncated skill. 

2. Global one-sided Lipschitz drift 

For a fixed positive integer n , let (R 

n , 〈·, ·〉 , | · | ) be an n -dimensional Euclidean space. Denote R 

n 
� R 

d by the set of all 

n × d matrices endowed with Hilbert-Schmidt norm ‖ A ‖ := 

√ 

trace (A 

∗A ) for every A ∈ R 

n 
� R 

d , in which A 

∗ is the trans- 

pose of A . For a fixed τ ∈ (0, ∞ ), which will be referred to as the delay or memory, let C = C([ −τ, 0] ; R 

n ) be all continuous 

functions from [ −τ, 0] to R 

n , equipped with the uniform norm ‖ ζ‖ ∞ 

:= sup −τ≤θ≤0 | ζ (θ ) | for every ζ ∈ C . By a filtered prob- 

ability space, we mean a quadruple (�, F , { F t } t≥0 , P ) , where F is a σ -algebra on the outcome space �, P is a probability 

measure on the measurable space (�, F ) , and { F t } t≥0 is a filtration of sub- σ -algebra of F , where the usual conditions are 

satisfied, i.e., (�, F , P ) is a complete probability space, and F 0 contains all P -null sets of F and F t + := 

⋂ 

s>t F s = F t . Let 

{ W ( t )} t ≥ 0 be a d -dimensional Brownian motion defined on the filtered probability space (�, F , { F t } t≥0 , P ) . 

In this paper, we consider the following NSDDE 

d [ X (t) − D (X (t − τ ))] = b(X (t) , X (t − τ )) d t + σ (X (t) , X (t − τ )) d W (t) , t ≥ 0 (2.1) 

with initial data 

X 0 = ξ = { ξ (θ ) : −τ ≤ θ ≤ 0 } ∈ L 

p 
F 0 

([ −τ, 0] ; R 

n ) , p ≥ 2 , 

that is, ξ is an F 0 -measurable C -valued random variable such that E ‖ ξ‖ p ∞ 

< ∞ for p ≥ 2. Here, D : R 

n → R 

n , and b : R 

n ×
R 

n → R 

n , σ : R 

n × R 

n → R 

n 
� R 

d are continuous in x and y . Fix T > τ > 0, assume that T and τ are rational numbers, and 

the step size 	∈ (0, 1) be fraction of T and τ , so that there exist two positive integers M , m such that 	 = T /M = τ/m . 

Throughout the paper, we shall denote C by a generic positive constant, whose value may change from line to line. Further, 

for any x, y, x , y ∈ R 

n , we shall assume that: 

(A1) For any s, t ∈ [ −τ, 0] and q > 0, there exists a positive constant K 1 such that 

E ‖ ξ (s ) − ξ (t) ‖ 

q 
∞ 

≤ K 1 | s − t| q . 
(A2) D (0) = 0 , and there exists a positive constant κ ∈ (0, 1/2) such that 

| D (x ) − D ( x ) | ≤ κ| x − x | . 
(A3) There exists a positive constant K 2 such that 

〈 x − D (y ) , b(x, y ) 〉 ∨ ‖ σ (x, y ) ‖ 

2 ≤ K 2 (1 + | x | 2 + | y | 2 ) . 
(A4) There exist positive constants l , K 3 and K 4 such that for p ≥ 2 

2 〈 x − D (y ) − x + D ( y ) , b(x, y ) − b( x , y ) 〉 + (p − 1) ‖ σ (x, y ) − σ ( x , y ) ‖ 

2 ≤ K 3 (| x − x | 2 + | y − y | 2 ) , 
and 

| b(x, y ) − b( x , y ) | ≤ K 4 (1 + | x | l + | x | l + | y | l + | y | l )(| x − x | + | y − y | ) . 
Remark 2.1. Due to the existence of implicitness and the neutral term, scopes of 	 and κ in assumption (A2) are given in 

order to guarantee rationality. 

Remark 2.2. If b ( x , y ) satisfies (A4), then, for any x, y ∈ R 

n , we have 

| b(x, y ) | ≤ | b(x, y ) − b(0 , 0) | + | b(0 , 0) | ≤ K 4 (1 + | x | l + | y | l )(| x | + | y | ) + | b(0 , 0) | 
≤ C(1 + | x | + | x | l+1 + | y | + | y | l+1 ) , 
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