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A united form of the classical Hermite interpolation and shape-preserving interpolation is 

presented in this paper. The presented interpolation method provides higher order contin- 

uous shape-preserving interpolation splines. The given interpolants are explicit piecewise 

rational expressions without solving a linear or nonlinear system of consistency equations. 

By setting parameter values, the interpolation curve can be generated by choosing the clas- 

sical piecewise Hermite interpolation polynomials or the presented piecewise rational ex- 

pressions. For monotonicity-preserving and convexity-preserving interpolation, the appro- 

priate values of a parameter are given on each subinterval. Numerical examples indicate 

that the given method produces visually pleasing curves. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

In scientific data visualization and industrial design, we often require to generate a smooth function that interpolates 

a prescribed set of data. The interpolation function is often needed to preserve certain geometric shape properties of the 

data such as monotonicity or convexity. During the past 40 years, various shape-preserving interpolation methods have been 

proposed. 

Many polynomial spline methods have a common feature in that no additional knots need to be supplied, see [1,11,35] . 

High smoothness interpolation was discussed in [13] . Cubic spline interpolations were analyzed in [14,30] . The methods of 

preserving monotonicity were presented in [32,39] . Monotone and convex spline interpolations were considered in [43] . In 

contrast, the papers [22,50] discussed the methods by adding one or two additional knots on the subinterval so that the 

monotonicity or convexity of the data is preserved. Shape preserving C 2 cubic interpolations were discussed in [22,44] . In 

[50] , it was mentioned that the user could interactively adjust the slopes and knot locations in order to alter the shape of 

the interpolating curves as desired. 

Rational interpolant can produce satisfying shape-preserving interpolation. There are many effective methods for the 

construction of shape-preserving interpolants. In [2,33,47] , rational cubic interpolation splines were constructed to visualize 

positive data. In [15,25] , rational quadratic interpolations were discussed for monotonicity-preserving. Rational cubic inter- 

polation in [1,45,46] are appropriate for monotonicity-preserving. Rational cubic interpolation in [9,10] are appropriate for 

convexity-preserving. 
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The recursive construction of Hermite spline interpolation was presented in [28] . By choosing the derivative values at 

knots, shape-preserving interpolants can be discussed. Shape preserving Hermite interpolations were considered in [40,42] . 

The subdivision algorithms were presented for monotone and convex Hermite interpolants in [41] . 

Relative to construct C 1 shape-preserving interpolants, it is a more difficult task to construct a C 2 shape-preserving inter- 

polant, see [16,18,36] . Shape preserving C 2 cubic and quintic interpolation were discussed in [21,44] . For C 2 continuity, the 

solution of the consistency equations was concerned, see [9,16,18] . 

For shape-preserving approximation, some error estimates have been discussed in [3,4,8] . Monotone approximation were 

presented in [19,20] . As we know, the approximation by B-splines is shape-preserving, see [6] , but the approximation order 

is not satisfied. In [5] , a simple convexity-preserving algorithm was given by B-splines. 

Recently, in application to computer-aided design, the variable degree polynomial spline was presented in [12] . Interpola- 

tion methods with tension control were given in [24,26] . Shape-preserving curve representations were considered in [31,48] . 

Shape-preserving L 1 splines were discussed in [37,38] . 

For C 2 continuity, when the methods are concerned to solve the consistency equations, shape-preserving properties will 

lead to some constraint conditions on the interpolation data and changes to any data will require solving again all the 

equations. Therefore, it is difficult to achieve monotonicity-preserving and convexity-preserving at the same time. In [15] , 

for strict monotone data, the existence and uniqueness of a positive solution of the non-linear equations were proved. In 

[17] , for strict convex data, the existence and uniqueness of a solution of the non-linear equations satisfying the convexity 

constraint were shown. In [18] , it was mentioned that the proper choice of the parameter to guarantee shape preservation 

is still an unsettled question. 

There are few C 2 continuous interpolation methods which are appropriate not only for monotonicity-preserving but 

also for convexity-preserving. In [15,39] , the convexity-preserving properties of the interpolants were not discussed. In 

[7,10,17,49] , the monotonicity-preserving properties of the interpolants were not discussed. In the paper [27] , the given 

interpolant is convexity-preserving and C 2 continuous without solving a global system of equations, and the approxima- 

tion order is 3. With second order precision in general, the given methods in [29,51,52] were C 2 continuous interpolation 

methods which are appropriate not only for monotonicity-preserving but also for convexity-preserving. 

The first motivation of this paper is to present higher order continuous piecewise interpolants which are appropriate not 

only for monotonicity-preserving but also for convexity-preserving. We will construct higher order continuous interpolants 

without solving a global system of consistency equations or adding additional knots on the subinterval. 

The second motivation of this paper is to present shape-preserving interpolants which are the generalization of the clas- 

sical Hermite interpolants. The classical Hermite interpolants are of higher order approximation. The classical Hermite inter- 

polants may be shape-preserving for some data and may not be shape-preserving for other data. Based on the properties of 

the given data, we can choose interpolants on each subinterval. 

The rest sections of this paper are organized as follows. In next section, the piecewise expressions of the rational inter- 

polants are presented and some properties of the interpolants are described. The shape-preserving properties are discussed 

in Section 3 . Some numerical examples and conclusions are given in Sections 4 and 5 , respectively. 

2. Piecewise rational interpolants 

Let a = x 1 < x 2 < · · · < x n = b be a partition of the interval [ a , b ] and f (k ) 
i 

be given values corresponding to knots x i , f i = 

f (0) 
i 

, i = 1 , 2 , . . . , n, k = 0 , 1 , . . . , m, then we put h i = x i +1 − x i , � f i = ( f i +1 − f i ) /h i for i = 1 , 2 , . . . , n − 1 . 

For x ∈ [ x i , x i +1 ] , i = 1 , 2 , . . . , n − 1 , we will construct the interpolants 

H i,m 

(x ) = L i (x ) + 

m ∑ 

j=1 

r i, j (x ) h 

j 
i 
, (1) 

where m is a positive integer, L i (x ) = (1 − t) f i + t f i +1 , r i, j (x ) = p i, j (x ) /q i, j (x ) , 

p i, j (x ) = (1 − t ) j+1 t j αi, j + (1 − t ) j t j+1 βi, j , q i, j (x ) = 1 + (1 − t ) t w i, j , 

and t = (x − x i ) /h i . Thus, for x ∈ [ a , b ], we obtain piecewise interpolant 

H m 

(x ) = H i,m 

(x ) , L (x ) = L i (x ) , x ∈ [ x i , x i +1 ] , i = 1 , 2 , . . . , n − 1 , 

where L ( x ) is a piecewise linear interpolant. 

The parameters αi , j and β i , j will be chosen so that the higher derivatives of the interpolants satisfy 

H 

(k ) 
i,m 

(x i ) = f (k ) 
i 

, H 

(k ) 
i,m 

(x i +1 ) = f (k ) 
i +1 

, k = 1 , 2 , . . . , m. (2) 

Thus, the interpolants H m 

are C m continuous piecewise interpolants. 

Obviously, the interpolants H m 

are the classical Hermite interpolants when all w i, j = 0 . we restrict q i , j ( x ) to be a quadratic 

polynomial so that the constructed interpolant is simple and shape-preservation properties can be discussed conveniently. 

We have q i , j ( x ) > 0 when w i, j > −4 . When w i, j ≥ 0 , we have q i , j ( x ) ≥ 1. By taking large values of w i, j , we expect that the 

piecewise interpolant H m 

approximates the piecewise linear interpolant L ( x ) well. Therefore, we would like to take w i, j ≥ 0 

to achieve satisfying shape of the interpolation curves. 
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