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a b s t r a c t 

The behaviour of a thin fluid film with a new slip/no slip model (The double parameter 

slip DPS) on a part of the boundary is studied. From the Stokes equations, the convergence 

of the velocity, pressure and wall-stress is established. The limit problem is described in 

terms of a new Reynolds equation involving shear stress and associated with a variational 

equation. Existence and uniqueness are proved. Relation with the previously known thin 

film problem with Tresca boundary condition is highlighted. A numerical algorithm is pro- 

posed and numerical examples are given. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The theory of lubrication concerns the flow of a fluid between two very close surfaces in relative displacement. It is 

shown that it is possible to replace the Stokes system by an elliptic equation, called Reynolds equation, in which the un- 

known is the pressure (assumed constant across the thin film) and whose coefficients depend on the distance h between 

the surfaces, their relative velocity u s and the properties of the fluid (the dynamic viscosity μ) [1] : 
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This procedure also assumes, that the velocity of the fluid layer adhering to the wall is equal to the velocity of the wall 

(no slip condition). However, in the last decades, with the use of new experimental tools, this condition is increasingly 

questioned. 

Various boundary conditions can be found in lubrication for the Reynolds equation. The Fourier condition, in which the 

sliding velocity is proportional to the shear, is often used. It leads to an equation close to the classical Reynolds equation 

[2,3] . Another condition, which is analogous to the Tresca model in solid mechanics [4] , introduces a critical shear stress 

σ max that cannot be exceeded. In this model, the slip only begins when the surface shear stress σ reaches the critical value: 

the fluid slips with a value proportional to this critical value. It has been proved in a rigorous way, that the Tresca Reynolds 

(TR) model is the thin film limit of a system of equations describing a Stokes flow with a Tresca boundary condition (TS 

model). Existence and uniqueness for both problems can be found in [5,6] . However, numerous lubrication papers no longer 

use the Tresca or the Navier condition [7–11] . A new slip modelling is used that combines the Tresca condition and the 
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Navier condition: The double Parameter Slip associated to Reynolds equation (DPSR) [12] . It takes into account both the 

critical shear stress and the Navier coefficient. Like the Tresca model, there is no sliding, as long as the tangential stress to 

the wall is less than this critical shear stress. However, the tangential stress to the wall can exceed this critical value. In this 

situation, the slip is proportional to the stress as in the Navier model. 

| σ | = σmax ± μ

b 
s 

The sign ± is linked to the fact that if the actual shear stress is greater than the critical stress σ max , the force acting on the 

fluid particle is negative. So the particle is detached from the wall with a negative velocity. Conversely, if the shear stress is 

less than −σmax , this velocity is a positive one. 

The aim of this paper is firstly to generalize what has been done for the (TR) model to the (DPSR) model. Compared 

to previous works, several additional difficulties appear. We have considered a more realistic geometry with a sliding on a 

curved surface rather than a flat one. This allowed us to remove an ambiguity that appeared in some articles in mechanics 

on the actual calculation of the tangential thin film stress [13] . In Section 2 , the DPS condition is proposed for the Stokes 

problem (DPSS). Existence and uniqueness are proved. Then derivation of the (DPSR) model as the limit of (DPSS) one is 

studied. The major difference between this analysis and those of [5] is on the estimates of the velocity. Uniqueness of the 

solution of (DPSR) model is obtained by a specific decomposition of the velocity field. Note that the (DPSR) model is a 

Neumann problem for pressure, whereas most lubrication studies concern Dirichlet problem for pressure. This leads us to 

study in Section 3 the case of (DPSR) problem with Dirichlet boundary condition. Existence of such a problem is proved by 

monotonicity. Moreover, we showed that the (DPSR) Dirichlet model could be considered as an approximation of the (TR) 

Dirichlet one and converged towards it when the Navier coefficient tends to infinity. Numerical algorithms are proposed to 

solve (DPSR) and (TR) Dirichlet models. Finally, in Section 4 , we give some numerical examples and discuss the results. 

2. From 3D Stokes to 2D Reynolds with double parameter slip model 

Let ω a domain of the ( x 1 , x 2 ) plane (see Fig. 1 ) and h a bounded continuous function defined on ω, with h in 

L ∞ ( ω) ∩ H 

1 ( ω) such that h ( x 1 , x 2 ) ≥α > 0. The fluid is contained between ω and the surface �ε 
1 

defined by x 3 = εh (x 1 , x 2 ) in 

which ε is a small parameter. 

Let 

�ε = { (x 1 , x 2 , x 3 ) ∈ R 

3 : (x 1 , x 2 ) = x ∈ ω and 0 < x 3 < εh (x 1 , x 2 ) } 

∂�ε = �
ε 

1 ∪ �
ε 

L ∪ ω 

with �ε 
L 

is the lateral boundary of �ε . 

By neglecting the external forces, the motion of an incompressible Newtonian fluid is given by the following Stokes 

equations ⎧ ⎨ 

⎩ 

−
∂σ ε 

i j 

∂x j 
= 0 in �ε 

di v (u 

ε ) = 0 in �ε 

(1) 

Fig. 1. Lubricated contact. 
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