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In this article we study balanced model reduction of linear systems for feedback control 

problems. Specifically, we focus on linear quadratic regulators with collocated inputs and 

outputs, and we consider perturbative approximations of the dynamics in the case that the 

Hankel singular values corresponding to the hardly controllable and observable states go 

to zero. To this end, we consider different perturbative scenarios that depend on how the 

negligible states scale with the small Hankel singular values, and derive the correspond- 

ing limit systems as well as approximate expressions for the optimal feedback controls. 

Our approach that is based on a formal asymptotic expansion of an algebraic Riccati equa- 

tions associated with the Pontryagin maximum principle and that is validated numerically 

shows that model reduction based on open-loop balancing can also give good closed-loop 

performance. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Balanced model reduction, specifically balanced truncation and residualisation, are powerful methods to reduce the di- 

mensionality of large-scale linear open-loop control systems [1] . The idea is to compute an associated pair of Lyapunov 

equations and identify a subspace that contains only states that are at the same time highly controllable and observable. 

One of the features is that they give computable, yet relatively conservative a priori error bounds for all measurable control 

inputs with finite energy (i.e. for all square integrable inputs). 

It is less clear, however, whether balancing leads to high fidelity reduced models when the inputs are feedback controls 

that depend on the system states: the reason for scepticism is that model reduction of open-loop systems aims at approx- 

imating the system output as a function of the input where in case of partially observable closed-loop systems the input 

(i.e. the control) is a function of the output. The key question therefore is whether balancing can guarantee a backward 

stable approximation of the dynamics in the sense of approximating the control. 

The linear quadratic regulator (LQR) is a special case of optimal control problem that has an analytic solution in terms of 

a linear feedback law and a pair of matrix Riccati equations. The design parameters for the LQR are the weighting matrices 

in the objective function, selected according to the system design. These matrices directly affect the optimal control perfor- 

mance many and discussions in the pas were related to the question how to shape these matrices based on what is called 

eigenstructure assignment [4,6,9] . For finite time-horizon optimal problems, one of the most actively investigated model 
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reduction schemes is the singular perturbation approximation, based on a perturbative approximations of the corresponding 

Riccati differential equation [12] ; an alternative approach via two-point boundary value problems is presented in [17] and 

compared to the former in [18] . 

Balanced model reduction based on balancing a pair of algebraic control and filter Riccati equations has been first stud- 

ied by Jonckheere and Silverman [8] , based on the idea of projecting the dynamics onto a jointly dominant subspace of 

the solutions to the two algebraic Riccati equations (ARE); cf. also [19,23] . Compared to standard balanced truncation, LQG 

balancing is far more expensive as it requires to compute a pair of ARE rather than just a pair of linear Lyapunov equa- 

tions. Moreover the Riccati equations are lacking the intuitive energy interpretation of the quadratic forms formed by the 

controllability and observability Gramians that are the solutions to the associated Lyapunov equations. 

In this article we follow an alternative approach and ask how to systematically reduce a linear feedback control system 

to the dominant jointly observable and controllable subspace that is related to the controllability and observability Gramians 

and the corresponding Hankel singular values of the system. Specifically, we identify the limit LQR system that is obtained 

from the original dynamics when some of the Hankel singular values go to zero. 

The approach pursued in this paper is based on a formal asymptotic expansion of the Pontryagin maximum principle 

and the associated ARE and gives rise to a reduced-order value function that can be identified with the control value of 

the balanced reduced-order system. We distinguish three different scenarios that differ in the way that the small Hankel 

singular values enter the balanced dynamics and which lead to different limit systems. Even though the reduced dynamics 

is based on open-loop balancing, the reduced systems show good closed-loop performance, and we validate the formal 

calculations by suitable numerical experiments. 

The article is structured as follows: In Section 2 the linear quadratic regulator and the balanced representation of the 

state space system are introduced. Section 3 that contains the main results is devoted to the formal perturbation analysis of 

three different classes of singularly perturbed regulator problems, and the fidelity of the resulting reduced closed-loop con- 

trol systems is compared numerically in Section 4 . The findings are briefly summarised in Section 5 . The article contains two 

appendices that recorded various standard results about transfer functions of linear systems and their singular perturbation 

approximation. 

2. Linear quadratic regulator 

We consider the continuous linear dynamical system 

˙ x = Ax + Bu 

y = Cx 

x (0) = x 0 

(1) 

where A ∈ R 

n ×n , B ∈ R 

n ×m , C ∈ R 

p×n and D 

p × m are constant matrices and x , u are the state and the input of the system and 

x (0) represents the initial condition. We assume that the linear system described by Eq. (1) is controllable and observable, 

and we define the quadratic cost function J is defined by 

J = 

1 

2 

∫ ∞ 

0 

(y T y + u 

T Ru ) dt (2) 

where y = Cx and R ∈ R 

m ×m is positive definite. We want to find an optimal control u that minimises the quadratic cost 

function J subject to (1) . We seek an optimal control denoted by u ∗ that has the property that 

J(u 

∗) ≤ J(u ) , ∀ u ∈ L 2 

where u ∗ ∈ L 2 and the constraint equation ˙ x = Ax + Bu has a unique solution. The corresponding optimal solution of this 

equation is denoted by x ∗. 

Now, we introduce an approach that depends on the Hamiltonian function defined in the following form: 

H = 

1 

2 

(
x T Qx + u 

T Ru 

)
+ λT ( Ax + Bu ) (3) 

where λ ∈ R 

n is called the costate variable. The following theorem describes the way in which we can find the optimal 

control that minimises the quadratic cost J . 

Theorem 1. [10 , 16] (Maximum principle) If x ∗, u ∗ is an optimal solution of (1) and (2) , then there exists a function λ∗(·) ∈ R 

n 

such that 

˙ x = 

∂H 

∂λ
(4) 

˙ λ = −∂H 

∂x 
(5) 
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