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In this paper we construct the Weyl–Titchmarsh theory for the fractional Sturm–Liouville 

equation. For this purpose we used the Caputo and Riemann–Liouville fractional operators 

having the order is between zero and one. 
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1. Introduction 

As is well known that since the results were introduced on some special differential equations by Sturm and Liouville, 

the authors have made an effort to generalize the equations and the results on such equations as much as possible. One of 

the remarkable results have been established in 1910 by Weyl [1] on the following second-order Sturm–Liouville equation 

−(p(x ) y ′ ) ′ + q (x ) y = λy, x ∈ [0 , ∞ ) , (1.1) 

where p , q are real-valued functions, p > 0 and p −1 , q are locally integrable functions on the given interval. These results are 

about the number of the square integrable solutions of the Eq. (1.1) . Indeed, according to the results of Weyl, at least one 

solution of the two linearly independent solutions of (1.1) must lie in the Lebesgue space consisting of all functions whose 

square is integrable on [0, ∞ ). Besides, the other solution may or may not lie in that Lebesgue space. These situations 

are known in the literature as limit-point and limit-circle cases and the results have been introduced with the help of 

the geometric properties of the combinations of the independent solutions of Eq. (1.1) . After this fundamental work, a lot 

of authors have introduced several results on this type of equation or on the similar equations including difference and 

dynamic equations (for example, see [2–16] ). 

In recent years, there has been a flow from differential equations with integer orders to differential equations with 

fractional orders. Although the attempt to achieve much more general results on ordinary differential equations, the useful 

theorems have been introduced already. In fact, Klimek and Agrawal in their work [17] have considered following fractional 

Sturm–Liouville equation 

C D 

α
b − p(x ) D 

α
a + y + q (x ) y = λw (x ) y, x ∈ [ a, b] , (1.2) 

where α ∈ (0, 1) ∪ (1, 2), p ( x ) � = 0 for all x ∈ [ a, b] , w (x ) > 0 , p , q are real-valued and continuous functions on [ a , b ]. Here C D 

α
b −

represents Caputo derivative of order α with the rule 

C D 

α
b − y = I m −α

b −

(
−d m y 

dx m 

)
, x < b, 
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where Re (α) ∈ (m − 1 , m ) , 

I m −α
b − y = 

1 

�(α) 

∫ b 

x 

(t − x ) α−1 y (t ) dt , x < b, 

�( α) denotes the Euler gamma function and D 

α
a + represents Riemann–Liouville derivative of order α with the rule 

D 

α
a + y = 

d m 

dx m 

(
I m −α
a + y 

)
, 

where Re (α) ∈ (m − 1 , m ) , 

I m −α
a + y = 

1 

�(α) 

∫ x 

a 

(x − t ) α−1 y (t ) dt , a < x, 

�( α) denotes the Euler gamma function. They have obtained a symmetrical form related with (1.2) which is the generaliza- 

tion of (1.1) . Note that as α → 1 (1.2) is identical with (1.1) with w (x ) ≡ 1 . Using this symmetry they have introduced some 

results on the eigenvalues of some symmetric boundary-value problems related with (1.2) . 

In the literature there exist some papers including fractional Sturm–Liouville equations with some boundary conditions. 

The results on such problems can be found, for example, in [18–23] . The results are on the existence and some properties 

of eigenvalues and related eigenfunctions. However, in this paper we consider another problem. This problem is related 

with the square integrable property of the solutions of a fractional Sturm–Liouvile equation defined on a singular interval. 

It seems that up to now there have not been any work on the Eq. (1.2) where at least one of the real-valued functions p , 

q and w have a singularity on the given interval. This problem is related with Weyl’s theory. Therefore in this paper we 

construct Weyl theory on fractional Sturm–Liouville equation with α ∈ (0, 1). 

2. The fractional equation 

In this paper we consider the following fractional equation 

C D 

α
b − D 

α
a + y + q (x ) y = λy, x ∈ [ a, b) , (2.1) 

where q ( x ) is real-valued and continuous on each compact subset of [ a , b ) and 0 < α < 1. We assume that a is the regular 

point for (2.1) and b is the singular point for (2.1) . 

Let L 2 ( a , b ) denotes the Hilbert space consisting of all functions satisfying the following ∫ b 

a 
| y | 2 dx < ∞ 

with the usual inner product 

(y, z) = 

∫ b 

a 

y z dx. 

Now we consider the subspace D of L 2 ( a , b ) consisting of all functions y ∈ L 2 ( a , b ) such that D 

α
a + y and 

C D 

α
b − D 

α
a + y are 

meaningful and the left-hand side of (2.1) belongs to L 2 ( a , b ). Then for the functions y , z ∈ D following equality is obtained 

[17] ∫ d 

c 

{[
C D 

α
b − D 

α
a + y + q (x ) y 

]
z − y 

[
C D 

α
b − D 

α
a + z + q (x ) z 

]}
dx = W [ y, z](d) − W [ y, z](c) , (2.2) 

where a ≤ c < d ≤ b , W [ y , z ]( x ) represents the Wronskian of y and z with the rule 

W [ y, z](x ) = 

(
I 1 −α
a + yD 

α
a + z − D 

α
a + yI 1 −α

a + z 
)
( x ) . 

In particular (2.2) implies that for y , z ∈ D at the singular point b the value W [ y , z ]( b ) exists and is finite. 

Note that there exists a unique solution of (2.1) satisfying the conditions [24] 

(I 1 −α
a + y )(l) = l 1 , (D 

α
a + y )(l) = l 2 , 

where l 1 , l 2 ∈ C , l ∈ [ a, b) . 

Lemma 2.1. Let y 1 , y 2 be the linearly dependent solutions of (2.1) . Then the W [ y 1 , y 2 ] ≡ 0 on [ a , b ). Conversely, if W [ y 1 , y 2 ](x 0 ) = 

0 for x 0 ∈ [ a, b) , then the solutions y 1 and y 2 are linearly dependent. 

Proof. Let y 1 and y 2 be the linearly dependent solutions of (2.1) . Then one may find the constants c 1 and c 2 (not both zero) 

such that 

c 1 y 1 + c 2 y 2 = 0 , x ∈ [ a, b) . (2.3) 

By applying the operator I 1 −α
a + to (2.3) one gets 

c 1 I 
1 −α
a + y 1 + c 2 I 

1 −α
a + y 2 = 0 , x ∈ [ a, b) . (2.4) 
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