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a b s t r a c t 

This paper reports a multiscale analysis and numerical algorithms for the elastic wave 

equations with rapidly oscillating coefficients. We mainly focus on the first-order and the 

second-order multiscale asymptotic expansions for the wave equations, which is proved 

to enjoy an explicit convergence rate. In our method, the homogenized equations are dis- 

cretized by the finite element method in space and a symplectic geometric scheme in time. 

The multiscale solutions are then obtained efficiently by the standard multisclae asymp- 

totic expansion framework. Several numerical simulations are carried out to validate the 

predicted convergence results. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper the elastic wave equations with rapidly oscillating coefficients are investigated, which arise from the wave 

propagation in composite materials with a periodic microstructure. The mathematical formulation for the elastic wave equa- 

tions with rapidly oscillating coefficients is given by ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 
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Here �⊂ R n , n ≥ 2 is a bounded convex domain with a boundary ∂�. 0 < ε � 1 is a small parameter. u ε (x, t) = (u ε 
1 
, . . . , u ε n ) 

T 

is the displacement function, σε 
i j 
(x, t) and e ε 

pk 
(x, t) are the stress tensor and the strain tensor of a elastic body, respectively. 

� This work is supported by National Natural Science Foundation of China (grant # 11201476 , 11571353 , 91730302 ). 
∗ Corresponding author. 

E-mail addresses: dongql@lsec.cc.ac.cn (Q.-l. Dong), clq@lsec.cc.ac.cn (L.-q. Cao), xinwang@shu.edu.cn (X. Wang), huangjz@lese.cc.ac.cn (J.-z. Huang). 

https://doi.org/10.1016/j.amc.2018.04.073 

0 096-30 03/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2018.04.073
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2018.04.073&domain=pdf
https://doi.org/10.13039/501100001809
mailto:dongql@lsec.cc.ac.cn
mailto:clq@lsec.cc.ac.cn
mailto:xinwang@shu.edu.cn
mailto:huangjz@lese.cc.ac.cn
https://doi.org/10.1016/j.amc.2018.04.073


Q.-l. Dong et al. / Applied Mathematics and Computation 336 (2018) 16–35 17 

f (x, t) = ( f 1 , . . . , f n ) 
T is a body force in �. ρε( x , t ) is the mass density function. 

∂u ε (x, t) 
∂t 

denotes the first-order partial 

derivative of a displacement function u ε( x , t ) with respect to t . Initial condition ū 1 (x ) is a known function. Let us denote 

ξ = ε −1 x . Throughout the paper, we make the following assumptions for the coefficients tensor (a ε 
i jpk 

(ξ , t)) : 

(A 1 ) a ijpk ( ξ , t ) is an 1-periodic function in ξ for any fixed t ∈ (0, T ). 

(A 2 ) a i jpk (ξ , t) = a jikp (ξ , t) = a pki j (ξ , t) . 

(A 3 ) μ0 ηip ηip ≤ a ijpk ( ξ , t ) ηip ηjk ≤μ1 ηip ηip , a . e . ( ξ , t ) ∈ R n × (0, T ), where μ0 , μ1 > 0 are constants and ( ηip ) is any real 

symmetric matrix. 

It is worth to pointing out that the analytical solution of problem (1.1) is usually unavailable due to the complexity of 

the system. Thus developing a efficient and accurate numerical scheme for the equations is very important. To obtain a 

numerical solution with high accuracy, a numerical approach (such as the finite element method) usually requires huge 

computational cost, because it would require a very fine mesh to capture the microscopic details of the medium. Moreover, 

due to the limitation of the CFL conditions, the time-step has to be chosen sufficiently small. Therefore, the overall com- 

putational cost is prohibitively expensive. An approach to overcome these difficulties is the homogenization method (see, 

e.g. [4,21,23] ). However, it is important to noting that the homogenization method describes the asymptotic behavior of the 

solution as ε → 0. In real applications, while ε is small, it does not approach to zero. Numerous studies have shown that the 

numerical accuracy of the homogenization method may not be satisfactory if ε is not sufficiently small [6,7,11,13,14,18,27] . 

The goal of this work is to develop an efficiently numerical approach based on the multiscale asymptotic method and sym- 

plectic scheme for the elastic wave Eq. (1.1) . 

For the elastic wave problem with rapidly oscillating coefficients, Bensoussan et al. [4] reported a first-order corrector 

with the proofs in the Hilbert space L 2 (0, T , H 

1 ( �)). Brahim–Otsmane et al. [5] presented the C ([0, T ]; L 1 ( �))-estimate 

result for a first-order corrector. Abdulle et al. [1,2] provided finite element heterogeneous multiscale method (FE-HMM) 

for the elastic wave equations over long times in a rapidly varying medium and with highly oscillatory coefficients. Castro 

and Zuazua [8,9] studied the wave equation with the rapidly oscillating density and used the WKB approximation to find 

an explicit formula for eigenvalues and eigenfunctions. Jiang and Efendiev [19] proposed two finite element approaches by 

using the global fields for a scalar wave equation with nonseparable spatial scales. However, the convergence results of 

the two approaches do not contain the explicit term and only have δ( ε) approaching zero as ε → 0. Therefore, it is highly 

desirable to design a numerical method with an explicit convergence rate. As we known, the multiscale methods with 

explicit convergence rates for the elliptic equation, the parabolic equation, the elasto-static equations and the Helmholtz 

equation were established in the periodic cases. Unfortunately, we encounter a major difficulty when applying the usual 

multiscale asymptotic methods for the wave equations. The crucial point is how to deal with the multiscale asymptotic 

solution on the boundary. The main idea proposed in this study is to impose homogeneous Dirichlet boundary conditions 

on the boundary ∂Q of the unit cell Q . Suppose � is the union of several entire periodic cells, then the numerical solution 

of problem (1.1) obtained by the multiscale asymptotic expansion automatically satisfies the boundary conditions on ∂�. 

Furthermore, by requiring the geometric symmetry of coefficients (a i jpk (ξ , t)) , ξ = ε −1 x as stated in conditions (H 1 ) − (H 2 ) 

given below, we can derive the explicit convergence rate. 

We outline the contents of the paper. In Section 2 , we present the multiscale asymptotic expansions for the elastic wave 

equations. The convergence rate of the proposed multiscale asymptotic expansions is then proved in Section 3 . In Section 4 , 

we focus on the construction of the numerical scheme of the cell functions and the homogenized elastic wave equations. 

In Some numerical simulations are reported in Section 4 to validate the analysis. Finally, a concluding remark is given in 

Section 6 . Throughout the paper, we denote C as a positive constant independent of ε and use the Einstein summation 

convention on repeated indices. 

2. The multiscale asymptotic expansions and the main convergence theorem 

In this section, we first present the formal multiscale asymptotic expansions for the elastic wave equations. Then the 

convergence results of the multiscale asymptotic expansion approaches are given by a theorem ( Theorem 2.1 ). 

The first-order and second-order multiscale asymptotic expansions for the elastic wave equations are defined as follows 
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(2.1) 
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