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a b s t r a c t 

In this paper, the decoupled Crank–Nicolson/Adams–Bashforth scheme for the Boussinesq 

equations is considered with nonsmooth initial data. Our numerical scheme is based on 

the implicit Crank–Nicolson scheme for the linear terms and the explicit Adams–Bashforth 

scheme for the nonlinear terms for the temporal discretization, standard Galerkin finite el- 

ement method is used to the spatial discretization. In order to improve the computational 

efficiency, the decoupled method is introduced, as a consequence the original problem is 

split into two linear subproblems, and these subproblems can be solved in parallel. We 

verify that our numerical scheme is almost unconditionally stable for the nonsmooth ini- 

tial data ( u 0 , θ0 ) with the divergence-free condition. Furthermore, under some stability 

conditions, we show that the error estimates for velocity and temperature in L 2 norm is of 

the order O(h 2 + �t 
3 
2 ) , in H 

1 norm is of the order O(h 2 + �t) , and the error estimate for 

pressure in a certain norm is of the order O(h 2 + �t) . Finally, some numerical examples 

are provided to verify the established theoretical findings and test the performances of the 

developed numerical scheme. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The Boussinesq problem is an important system with dissipative nonlinear terms in atmospheric dynamics. This system 

not only contains the velocity and pressure but also includes the temperature filed, and it is actual in many situations, such 

as room ventilation, double glass window design, etc. In this paper, we consider the following the Boussinesq equations in 

R 

2 whose coupled equations governing viscous incompressible flow and the heat transfer ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

u t − ν�u + (u · ∇) u + ∇p = −k ν2 j θ + f , in � × (0 , T ] , 
div u = 0 , in � × (0 , T ] , 
θt − λν�θ + u · ∇θ = g, in � × (0 , T ] , 
u = 0 , θ = 0 , on ∂� × (0 , T ] , 
u (x, 0) = u 0 , θ (x, 0) = θ0 , on � × { 0 } , 
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where � is a bounded convex polygonal domain, u the fluid velocity, p the pressure, θ the temperature, ν > 0 the viscosity, 

k the Groshoff number, λ = P r −1 , P r the Prandtl number, j = 

(
1 
0 

)
the vector of gravitational acceleration, T > 0 the final 

time, f and g are forcing functions. 

When we develop an numerical scheme for the considered problem, one of the important aspects is the stability 

condition of the numerical scheme. Generally speaking, the implicit scheme is unconditionally stable, however we need 

to solve a large nonlinear algebraic system at each step. The explicit scheme is much easier in computation, but it suffers 

the severely restricted time step from the stability requirement. A popular approach to overcome this difficulty is using the 

implicit scheme for linear terms and the semi-implicit scheme or an explicit scheme for the nonlinear terms. Many scholars 

developed the efficient numerical schemes for nonlinear problems, for example, the Crank–Nicolson/Newton scheme for 

nonlinear parabolic equation [4] , for the incompressible Navier–Stokes equations, we can refer to [6,8–11,30] . Here, we 

consider the Crank–Nicolson/Adams–Bashforth (CNAB) scheme for the Boussinesq equations (1.1) , the advantages of the 

CNAB scheme can be list as follows: (i) it almost has the identical stability as the fully implicit scheme, (ii) it almost has 

the same convergence as the Crank–Nicolson extrapolation scheme under the same time step. (iii) the CNAB scheme only 

needs to solve the linear equations, then a lot of computational cost can be saved. 

High computational efficiency is another important aspect of the good numerical scheme. Usually, when we solve a 

multi-variables problem, a large algebraic system is formed in standard Galerkin method, and a lot of computational cost 

is required. The decoupled method can split the original problem into a series of subproblems, and the corresponding 

computational scales are reduced. There are many advantages for the decoupled method. For examples, (i) it allows 

us to tailor algorithm components flexibly and conveniently for each variables, (ii) it is suitable for today’s computing 

environment because it can efficiently and effectively exploit the existing computing resources, (iii) the decoupled method 

can be used in parallelism in the conventional sense. Based on the above advantages, the decoupled method has been used 

to deal with the multi-domain and multi-variables problems, here we just refer to [19,24–26] for examples. 

In this paper, we combine the advantages of the Crank–Nicolson/Adams–Bashforth scheme with the decoupled method 

to solve the Boussinesq equations with nonsmooth initial data. Our numerical scheme consists of two parts, one is the 

Navier–Stokes equations and the other is a nonlinear parabolic problem, the implicit Crank–Nicolson scheme for the linear 

terms and the explicit Adams–Bashforth scheme for the nonlinear terms. Under some reasonable assumptions, we establish 

the following almost unconditionally stable results, i.e., 

If u 0 ∈ L ∞ (�) 2 ∩ H 

1 
0 (�) 2 , θ0 ∈ L ∞ (�) ∩ H 

1 
0 (�) and satisfy the following conditions {

�t ≤ C 0 (u 0 , θ0 ) ∈ H 

1 ∩ L ∞ , 

| log h | �t ≤ C 0 (u 0 , θ0 ) ∈ H 

1 , 
(1.2) 

there hold 

‖ (u 

m 

h , θ
m 

h ) ‖ 

2 
1 + ν2 ‖ (A h u 

m 

h , A h θ
m 

h ) ‖ 

2 
0 ≤ κ, 1 ≤ m ≤ N. (1.3) 

Where C 0 > 0 is a constant. Furthermore, the following error estimates are established 

‖ (u h (t m 
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h ) ‖ 0 ≤ κ(σ−1 (t m 

)�t 
3 
2 + σ− 1 

2 (t m 
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2 ) , 1 ≤ m ≤ N, (1.4) 

‖ (u h (t m 

) − u 
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h , θh (t m 

) − θm 

h ) ‖ 1 ≤ κ(σ−1 (t m 

)�t + σ− 1 
2 (t m 

) h ) , 1 ≤ m ≤ N. (1.5) ( 

�t 

m ∑ 

n =1 

σ 2 (t n ) ‖ p(t m 

) − p m 

h ‖ 

2 
0 

) 1 / 2 

≤ κ(�t + h ) , 1 ≤ m ≤ N. (1.6) 

where σ (t) = min { 1 , t} , here and below, ‖ (u , θ ) ‖ i = (‖ u ‖ 2 
i 

+ ‖ θ‖ 2 
i 
) 

1 
2 (i = 0 , 1 , 2) , the constant κ > 0 depend on the data λ, 

ν , �, T , u 0 , θ0 , f , g and κ is different at different places. 

The main contributions of this paper can be list as follows: (1) Compared with [4,8,10,13] , a more complex incom- 

pressible fluid problem is analyzed, and some new theoretical findings are provided, especially for the nonlinear terms. 

(2) Compared with [23,25,26,28,29] , the stability and convergence of the CNAB scheme for the Boussinesq equations with 

nonsmooth initial data are presented. (3) Thanks to the decoupled method, the Boussinesq equations is decoupled into 

two subproblems, and these subproblems can be solved in parallel. (4) The almost unconditional stability results and the 

optimal error estimates of the numerical solutions are provided with nonsmooth initial data. Therefore, this paper can be 

considered as an extension and supplement of the existed results [4,8,10,13,25,26,29] . 

The outlines of this paper can be list as follows. In Section 2 , some basic notions for the Boussinesq equations are 

recalled. Standard Galerkin finite element method is developed in Section 3 , and some stability and convergence results of 

the Boussinesq equations with nonsmooth initial data are also given. In Section 4 , the decoupled Crank–Nicolson/Adams–

Bashforth scheme for the Boussinesq equations is developed and the stability results of numerical solutions are provided. 

Section 5 is devoted to establish the optimal error estimates of the numerical solutions. Some numerical tests are presented 

in Section 6 to confirm the established theoretical findings and verify the efficiency of the developed numerical scheme for 

the Boussinesq equations. A conclusion is made in Section 7 . 
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