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a b s t r a c t 

Several new methods of numerical integration of Cauchy problems with blow-up solutions 

for nonlinear ordinary differential equations of the first- and second-order are described. 

Solutions of such problems have singularities whose positions are unknown a priori (for 

this reason, the standard numerical methods for solving problems with blow-up solutions 

can lead to significant errors). The first proposed method is based on the transition to 

an equivalent system of equations by introducing a new independent variable chosen as 

the first derivative, t = y ′ x , where x and y are independent and dependent variables in the 

original equation. The second method is based on introducing a new auxiliary nonlocal 

variable of the form ξ = 

∫ x 
x 0 

g(x, y, y ′ x ) dx with the subsequent transformation to the Cauchy 

problem for the corresponding system of ODEs. The third method is based on adding to 

the original equation of a differential constraint, which is an auxiliary ODE connecting the 

given variables and a new variable. The proposed methods lead to problems whose so- 

lutions are represented in parametric form and do not have blowing-up singular points; 

therefore the transformed problems admit the application of standard fixed-step numer- 

ical methods. The efficiency of these methods is illustrated by solving a number of test 

problems that admit an exact analytical solution. It is shown that: (i) the methods based 

on nonlocal transformations of a special kind are more efficient than several other meth- 

ods, namely, the method based on the hodograph transformation, the method of the arc- 

length transformation, and the method based on the differential transformation, and (ii) 

among the proposed methods, the most general method is the method based on the dif- 

ferential constraints. Some examples of nonclassical blow-up problems are considered, in 

which the right-hand side of equations has fixed singular points or zeros. Simple theoret- 

ical estimates are derived for the critical value of an independent variable bounding the 
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domain of existence of the solution. It is shown by numerical integration that the first and 

the second Painlevé equations with suitable initial conditions have non-monotonic blow- 

up solutions. It is demonstrated that the method based on a nonlocal transformation of 

the general form as well as the method based on the differential constraints admit gener- 

alizations to the n th-order ODEs and systems of coupled ODEs. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

1.1. Preliminary remarks. Blow-up solutions 

We will consider Cauchy problems for ordinary differential equations (briefly, ODEs), whose solutions tend to infinity at 

some finite value of the independent variable x = x ∗, where x ∗ does not appear explicitly in the differential equation under 

consideration and it is not known in advance. Similar solutions exist on a bounded interval (hereinafter in this article we 

assume that x 0 ≤ x < x ∗ ) and are called blow-up solutions. This raises the important question for practice: how to determine 

the position of a singular point x ∗ and the solution in its neighborhood using numerical methods. 

In the general case, the blow-up solutions that have a power singularity can be represented in a neighborhood of the 

singular point x ∗ in the form 

y � A (x ∗ − x ) −β, β > 0 , (1) 

where A and β are some constants. For these solutions we have lim 

x → x ∗
| y | = ∞ and lim 

x → x ∗
| y ′ x | = ∞ . 

Differentiating (1) , we obtain the derivatives near the singular point 

y ′ x � Aβ(x ∗ − x ) −β−1 , y ′′ xx � Aβ(β + 1)(x ∗ − x ) −β−2 . (2) 

It follows from (1) and (2) that the approximate relations 

y ′ x 
y 

� 

β

x ∗ − x 
, 

yy ′′ xx 

(y ′ x ) 2 
� 

β + 1 

β
(3) 

are valid near the singular point x ∗ . From the first relation in (3) we have the limiting property lim 

x → x ∗
(y ′ x /y ) = ∞ , which 

is common for any blow-up solution with a power singularity. The second relation in (3) can be used for computing the 

exponent β in performing numerical calculations. 

The formulas (1) –(3) remain valid also for non-monotonic blow-up solutions if there is a neighborhood on the left of the 

singular point ( x 1 ≤ x < x ∗ , where x 0 ≤ x 1 ), in which the solution is monotonic. 

Example 1. Consider the test Cauchy problem for the first-order nonlinear ODE with separable variables 

y ′ x = y 2 (x > 0) , y (0) = 1 . (4) 

The exact solution of this problem has the form 

y = 

1 

1 − x 
. (5) 

It has a power-type singularity (a first-order pole) at the point x ∗ = 1 and does not exist for x > x ∗ . 

The Cauchy problem (4) is a particular case of the three-parameters problem 

y ′ x = by γ (x > 0) , y (0) = a, (6) 

where a , b , and γ are arbitrary constants. If the inequalities 

a > 0 , b > 0 , γ > 1 (7) 

are valid, then the exact solution of the problem (6) is given by the formula 

y = A (x ∗ − x ) −β, (8) 

where 

A = [ b(γ − 1)] 
1 

1 −γ , x ∗ = 

1 

a γ −1 b(γ − 1) 
, β = 

1 

γ − 1 

> 0 . 

This solution exists on a bounded interval 0 ≤ x < x ∗ , where x ∗ is a singular point of the pole-type solution, and does not 

exist for x ≥ x ∗ . In this case, the solution (8) coincides with its asymptotic behavior in a neighborhood of the singular point 

(compare (1) with (8) ). 
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