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a b s t r a c t 

In this paper, a second-order accurate implicit scheme based on the L 2 –1 σ formula for 

temporal variable and the fractional centered difference formula for spatial discretization 

is established to solve a class of time-space fractional diffusion equations with time drift 

term and non-linear delayed source function. The stability of this scheme is proved rigor- 

ously by the discrete energy method under several auxiliary assumptions, then we theo- 

retically and numerically show that the proposed scheme converges in the L 2 -norm with 

the order O((�t) 2 + h 2 ) with time step �t and mesh size h . Moreover, it finds that the 

discreted linear systems are symmetric Toeplitz systems. In order to solve these systems 

efficiently, the conjugate gradient method with suitable circulant preconditioners is de- 

signed. In each iterative step, the storage requirements and the computational complexity 

of the resulting equations are O(N) and O(N log N) respectively, where N is the number of 

grid nodes. Numerical experiments are carried out to demonstrate the effectiveness of our 

proposed circulant preconditioners. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The fractional partial differential equations describing some certain phenomena have been interested and recognized in 

numerous fields such as viscoelasticity [1] , control systems [2] , entropy [3] , engineering [4] and physics [5] . In the simula- 

tion of dynamical systems, two effects that are distribution of parameters in space and delay in time often exist. Meanwhile, 

we may face with fractional differential equations (FDEs) with time delay, which describe efficiently anomalous diffusion on 

fractals. And such models can be applied in physical objects of fractional dimension, such as some amorphous semiconduc- 

tors and strongly porous materials. Many applications in other fields can be found in Ref. [15] . 

In this work, we consider the effect of entering a delay term in the source function of time-space fractional diffusion 

equations, specifically, we mainly focus on a class of time-space fractional diffusion equations with time drift term and 

non-linear delayed source function (NLD-TSFDE): 

∂u (x, t) 

∂t 
+ λ

∂ αu (x, t) 

∂t α
= d(t) 

∂ βu (x, t) 

∂| x | β + f (x, t, u (x, t) , u (x, t − τ )) , 0 < t ≤ T , 0 ≤ x ≤ L, (1.1) 
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with the initial and boundary conditions 

u (x, t) = φ(x, t) , 0 ≤ x ≤ L, t ∈ [ −τ, 0) , 

u (0 , t) = u (L, t) = 0 , 0 < t ≤ T , (1.2) 

where τ > 0 is the delay parameter, d ( t ) ≥ d > 0 is a sufficiently smooth function and λ> 0. The time and space fractional 

derivatives are introduced in Caputo and Riesz sense [16] , respectively, that is, 

∂ αu (x, t) 

∂t α
= 

1 


(1 − α) 

∫ t 

0 

(t − η) −α ∂u (x, η) 

∂η
dη, 0 < α < 1 , 

∂ βu (x, t) 

∂| x | β = − 1 

2 cos ( πβ
2 

)
(2 − β) 

d 2 

dx 2 

∫ ∞ 

−∞ 

| x − η| 1 −βu (η, t) dη, 1 < β < 2 . 

Throughout this work, we suppose that the function f (x, t, u (x, t) , u (x, t − τ )) and the solution u ( x , t ) of (1.1) and 

(1.2) are sufficiently smooth in the following sense: 1. Let m be an integer satisfying mτ ≤ T < (m + 1) τ . Define I r = 

( rτ, (r + 1) τ ) , r = −1 , 0 , . . . , m − 1 , I m 

= ( mτ, T ) , I = 

⋃ m 

q = −1 I q ; 2. The nonlinear delay term f ( x , t , μ, ν) is sufficiently smooth 

and satisfies 

| f (x, t, μ1 , ν) − f (x, t, μ2 , ν) | ≤ c 1 | μ1 − μ2 | , f or all μ1 , μ2 ov er [0 , L ] × [0 , T ] , 

| f (x, t, μ, ν1 ) − f (x, t, μ, ν2 ) | ≤ c 2 | ν1 − ν2 | , f or all ν1 , ν2 ov er [0 , L ] × [ −τ, T ] , 

where c 1 and c 2 are two positive constants. 

Actually, when removing the first term in the left hand side of (1.1) and letting d(t) = 0 , NLD-TSFDE becomes the sim- 

plest system proposed in [18,22,23] . If we drop the drift term 

∂u (x,t) 
∂t 

and set β = 2 in (1.1) , it reduces to nonlinear delayed 

fractional sub-diffusion equation [15,21,52] . When α = 1 , (1.1) becomes nonlinear time-delay space-fractional diffusion equa- 

tion [19,53] . Especially, when τ = 0 in (1.1) , NLD-TSFDE (1.1) and (1.2) reduces to time-space fractional mobile/immobile 

transport model [24,25,27,28] . It should be pointed out that there are very few cases in which the closed-form analytical 

solutions of FDEs are available, or the obtained analytical solutions are less practical (expressed by the transcendental func- 

tions or infinite series). Thus researches on numerical approximations and techniques for the solution of FDEs have attracted 

intensive interest; see [6–13,37] and references therein. Furthermore, as far as we know, no numerical methods have been 

reported yet for the numerical approximation of (1.1) and (1.2) . The goal of this paper is to present a fast second-order 

numerical scheme for solving NLD-TSFDE and establish the corresponding error estimates. 

Since the fractional operator has good natures of memory and hereditary, a naive discretization of the FDEs, even though 

implicit, leads to unconditionally unstable [26,34] . Moreover, traditional methods (e.g., Gauss elimination) for solving the 

discreted system tend to generate full coefficient matrices explicitly, which require computational cost of O(N 

3 ) and stor- 

age of O(N 

2 ) [29] , where N represents the number of spatial grid. To optimize the computational complexity, Meerschaet 

and Tadjeran [26,34] developed a first-order implicit finite difference scheme based on the shifted Grünwald–Letnikov dif- 

ference approximation. Lately, Wang et al. [30] discovered that the discrete system holds a Toeplitz-like structure, and we 

find that our discreted system in this work has a symmetric Toeplitz structure. It is well known that the matrix-vector mul- 

tiplication for the Toeplitz matrix can be computed in O(N log N) (not O(N 

3 ) ) operations via fast Fourier transform (FFT) 

[31] , and the storage requirement is reduced from O(N 

2 ) to O(N) . Thus, with this technique (i.e. FFT) and the Toeplitz-like 

structure, the operating costs of Krylov subspace methods are O(N log N) in each iteration [32] . Nevertheless, the Krylov 

subspace methods converge very slowly, when the Toeplitz/Toeplitz-like matrix is ill-conditioned. To overcome this obstacle, 

the preconditioned Krylov subspace methods were used intuitively to solve Toeplitz/Toeplitz-like systems [6,7] . Some other 

methods for efficiently solving such systems can be found in [14,17,20] . 

The structure of the paper is as follows. For clarity of presentation, a second-order accurate implicit difference scheme 

is introduced in the next section. In Section 3 , an error estimate and the stability of our discrete scheme are discussed. In 

Section 4 , some natures of the coefficient matrix are studied, and the preconditioned conjugate gradient method (PCG) is 

employed to solve the discrete scheme efficiently. Numerical results are given in Section 5 to demonstrate the efficiency of 

our numerical approaches. Finally, some conclusions of the work are drawn in Section 6 . 

2. Derivation of second order implicit difference scheme 

In this section, we seek to obtain a numerical solution based on finite difference method and analyze the stability and 

error of our implicit difference scheme (IDS). First we introduce some further notations. Let �t = 

τ
n 0 

and h = 

L 
M 

for two 

positive integers M , n 0 , t j = j �t (−n 0 ≤ j ≤ N = 

⌊
T 
�t 

⌋
) and x i = ih (0 ≤ i ≤ M) . Hence the time-space domain is covered by 

ω̄ h �t = ω̄ h × ω̄ �t with ω̄ �t = { t j | − n 0 ≤ j ≤ N} and ω̄ h = { x i | 0 ≤ i ≤ M} . Let S h = { v | v = ( v 0 , v 1 , . . . , v M 

) , v 0 = v M 

= 0 } be de- 

fined on ω̄ h , then an discrete inner product and the corresponding norm are defined as 

(u , v ) = h 

N−1 ∑ 

i =1 

u i v i , ‖ 

u ‖ 

= 

√ 

(u , u ) , for ∀ u , v ∈ S h . 
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