Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Numerical method for solving uncertain spring vibration equation

Lifen Jia^a, Waichon Lio^a, Xiangfeng Yang^{b,*}

^a Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

^b School of Information Technology and Management, University of International Business and Economics, Beijing 100029, China

ARTICLE INFO

Keywords: Spring vibration equation Uncertain differential equation Uncertainty theory Uncertain process

ABSTRACT

As a type of uncertain differential equations, uncertain spring vibration equation is driven by Liu process. This paper proposes a concept of α -path, and shows that the solution of an uncertain spring vibration equation can be expressed by a family of solutions of secondorder ordinary differential equations. This paper also proves that the inverse uncertainty distribution of solution of uncertain spring vibration equation is just the α -path of uncertain spring vibration equation, and a numerical algorithm is designed. Moreover, a formula to calculate the expected value of solution of uncertain spring vibration equation is derived. Finally, several numerical examples are provided to illustrate the efficiency of the numerical method.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

According to normality, duality, subadditivity and product axioms, uncertainty theory as a mathematical system was founded by Liu [6] in 2007, and perfected by Liu [8] in 2009. As an important contribution to uncertainty theory, uncertain process was proposed by Liu [7] for modelling the evolution of uncertain phenomena. As a counterpart of Wiener process, Liu process was first proposed by Liu [8] for dealing with white noise. It is a stationary and independent increment process whose increments are normal uncertain variables. Besides, almost all sample paths of Liu process are Lipschitz continuous. Based on Liu process, Liu [8] proposed uncertain calculus to deal with differentiation and integration of uncertain processes.

Uncertain differential equation was proposed by Liu [7] in 2008 driven by Liu process. Besides, Chen and Liu [1] first proved existence and uniqueness theorem for an uncertain differential equation. Later, the concept of stability of uncertain differential equation was proposed by Liu [8], some stability theorems were verified by Yao et al. [22], and stability in inverse uncertainty distribution was proved by Yang et al. [18]. More importantly, Yao and Chen [21] verified that the solution of an uncertain differential equation can be represented by a spectrum of solutions of ordinary differential equations. Following that, some other numerical methods such as Euler method (Yao and Chen [21]), Runge–Kutta method (Yang and Shen [13]), Adams method (Yang and Ralescu [14]), Adams–Simpson method (Wang et al. [11]), Milne method (Gao [2]), and Hamming method (Zhang et al. [23]) were also designed for solving uncertain differential equations. By now, uncertain differential equation has been widely applied in many fields such as finance (Liu [10]), optimal control (Zhu [24]), differential game (Yang and Gao [12,15]), heat conduction (Yang and Yao [16], Yang and Ni [17], Yang [19]), string vibration (Gao [3]), and spring vibration (Jia and Dai [4], Jia and Yang [5]). Uncertain differential equation has achieved fruitful results in both theory

E-mail addresses: jlf17@mails.tsinghua.edu.cn (L. Jia), wj-liao16@mails.tsinghua.edu.cn (W. Lio), yangxf@uibe.edu.cn (X. Yang).

https://doi.org/10.1016/j.amc.2018.05.045 0096-3003/© 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

and practice. For further explorations on the development and applications of uncertain differential equation, the interested readers may consult Yao's book [20].

As a sort of uncertain differential equation, uncertain spring vibration equation was first derived by Jia and Dai [4]. Since it is difficult to obtain the analytic solution of uncertain spring vibration equation, this paper will design a numerical method to solve uncertain spring vibration equation. The rest of this paper is arranged as follows. Section 2 reviews some basic concepts and theorems in uncertainty theory. Section 3 introduces uncertain spring vibration equation. Section 4 proposes a concept of α -path. Section 5 proves an important theorem. An inverse uncertainty distribution of solution theorem is proved in Section 6. Section 7 derives a formula to calculate the expected value of solution. In Section 8, we give several examples to illustrate the proposed numerical method. And Section 9 gives some conclusions.

2. Preliminaries

In this section, we review some basic concepts in uncertainty theory including uncertain variable, uncertain process and uncertain calculus.

For modelling belief degrees, Liu [6] defined an uncertain measure by the following three axioms:

Axiom 1. (Normality Axiom) $\mathcal{M}{\{\Gamma\}} = 1$ for the universal set Γ .

Axiom 2. (Duality Axiom) $\mathcal{M}{\Lambda} + \mathcal{M}{\Lambda}^{c} = 1$ for any event Λ .

Axiom 3. (Subadditivity Axiom) For every countable sequence of events $\Lambda_1, \Lambda_2, \ldots$, we have

$$\mathcal{M}\left\{\bigcup_{i=1}^{\infty}\Lambda_i\right\} \leq \sum_{i=1}^{\infty}\mathcal{M}\{\Lambda_i\}.$$

Besides, Liu [8] defined a product uncertain measure by the fourth axiom:

Axiom 4. (Product Axiom) Let $(\Gamma_k, \mathcal{L}_k, \mathcal{M}_k)$ be uncertainty spaces for k = 1, 2, ... The product uncertain measure \mathcal{M} is an uncertain measure satisfying

$$\mathcal{M}\left\{\prod_{k=1}^{\infty}\Lambda_k\right\} = \bigwedge_{k=1}^{\infty}\mathcal{M}_k\{\Lambda_k\}$$

where Λ_k are arbitrarily chosen events form \mathcal{L}_k for k = 1, 2, ..., respectively.

Theorem 2.1. (Liu [9]) The uncertain measure is a monotone increasing set function. That is, for any events Λ_1 and Λ_2 with $\Lambda_1 \subset \Lambda_2$, we have

$$\mathcal{M}\{\Lambda_1\} \leq \mathcal{M}\{\Lambda_2\}.$$

Definition 2.1. (Liu [6]) Let Γ be a nonempty set, and let \mathcal{L} be a σ -algebra over Γ . Then the triplet (Γ , \mathcal{L} , \mathcal{M}) is called an uncertainty space.

Definition 2.2. (Liu [6]) An uncertain variable ξ is a function from an uncertainty space (Γ , \mathcal{L} , \mathcal{M}) to the set of real numbers such that for any Borel set *B* of real numbers, the set

$$\{\xi \in B\} = \{\gamma \in \Gamma | \xi(\gamma) \in B\}$$

is an event.

Definition 2.3. (Liu [6]) The uncertainty distribution Φ of an uncertain variable ξ is defined by

 $\Phi(x) = \mathcal{M}\{\xi \le x\}$

for any real number x.

An uncertainty distribution $\Phi(x)$ is said to be regular if it is a continuous and strictly increasing function with respect to x at which $0 < \Phi(x) < 1$, and

$$\lim_{x \to -\infty} \Phi(x) = 0, \qquad \lim_{x \to +\infty} \Phi(x) = 1.$$

Definition 2.4. (Liu [8]) The uncertain variables $\xi_1, \xi_2, \ldots, \xi_n$ are said to be independent if

$$\mathcal{M}\left\{\bigcap_{i=1}^{n} (\xi_i \in B_i)\right\} = \bigwedge_{i=1}^{n} \mathcal{M}\{\xi_i \in B_i\}$$

for any Borel sets B_1, B_2, \ldots, B_n of real numbers.

Theorem 2.2. (Liu [9]) Let $x_1, x_2, ..., x_n$ be independent uncertain variables with regular uncertainty distributions $\Phi_1, \Phi_2, ..., \Phi_n$, respectively. If $f(x_1, x_2, ..., x_n)$ is strictly increasing with respect to $x_1, x_2, ..., x_m$ and strictly decreasing with respect to $x_{m+1}, x_{m+2}, ..., x_n$, then

$$\mathbf{x} = f(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$$

Download English Version:

https://daneshyari.com/en/article/8900742

Download Persian Version:

https://daneshyari.com/article/8900742

Daneshyari.com