Contents lists available at [ScienceDirect](http://www.ScienceDirect.com)

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Relations between total irregularity and non-self-centrality of graphs

Kexiang Xuª, Xiaoqian Gu♭, Ivan Gutman^{c,}*

^a *Nanjing University of Aeronautics & Astronautics, Jiangsu, Nanjing 210016, PR China* ^b *College of Science, Nanjing University of Aeronautics & Astronautics, Jiangsu, Nanjing 210016, PR China* ^c *Faculty of Science, University of Kragujevac, Kragujevac, Serbia*

a r t i c l e i n f o

Keywords: Degree (of vertex) Eccentricity (of vertex) Total irregularity Non-self-centrality number

a b s t r a c t

For a connected graph *G*, with $deg_G(v_i)$ and $\varepsilon_G(v_i)$ denoting the degree and eccentricity of the vertex v_i , the non-self-centrality number and the total irregularity of *G* are defined as $N(G) = \sum |\varepsilon_G(v_j) - \varepsilon_G(v_i)|$ and $irr_t(G) = \sum |\deg_G(v_j) - \deg_G(v_i)|$, with summations embracing all pairs of vertices. In this paper, we focus on relations between these two structural invariants. It is proved that $irr_t(G) > N(G)$ holds for almost all graphs. Some graphs are constructed for which $N(G) = irr_f(G)$. Moreover, we prove that $N(T) > irr_f(T)$ for any tree *T* of order $n > 15$ with diameter $d > 2n/3$ and maximum degree 3.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, we only consider finite, undirected, simple, and connected graphs. Let *G* be such a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G)$. We denote by $n(G)$ the order of G. The degree of $v_i \in V(G)$, denoted by $deg_G(v_i)$, is the number of vertices in *G* adjacent to v_i . For any positive integer *i*, we denote by $n_i(G)$, or n_i for short, the number of vertices of degree *i* in the graph *G*. The *degree set* of the graph *G* is the set of degrees of its vertices with their multiplicity indicated, which we shall write as $\mathcal{D}(G) = \{i^{(n_i)} : 1 \le i \le n - 1\}$.

For any two vertices v_i , v_j in a graph *G*, the distance between them, denoted by $d_G(v_i, v_j)$, is the length (i.e., the number of edges) of a shortest path connecting them in *G*.

The *eccentricity* $\varepsilon_G(v_i)$ of the vertex v_i of the graph *G* is the maximum distance from v_i to other vertices of *G*, i.e., $\varepsilon_G(v_i)$ = max_{$v_i \neq v_i$} $d_G(v_i, v_j)$. If $\varepsilon_G(v_i) = d_G(v_i, v_j)$, then v_i is an eccentric vertex of the vertex v_i . The eccentricity set of the graph *G*, denoted by $\mathcal{E}(G)$, is the set of the eccentricities of its vertices with their multiplicity indicated in the same manner as in $\mathcal{D}(G)$.

For any graph *G*, its *diameter* and *radius* are defined, respectively, as:

 $d = d(G) = \max_{v_i \in V(G)} \varepsilon_G(v_i)$ and $r = r(G) = \min_{v_i \in V(G)} \varepsilon_G(v_i)$.

Recently, a novel concept related to the eccentricity – the eccentric complexity $C_{ec}(G)$ of a graph *G* has been introduced [\[5\].](#page--1-0) It is conceived as the number of different eccentricities in *G*, that is, $C_{ec}(G) = d(G) - r(G) + 1$. Furthermore, several special eccentricity–based graphs, including self-centered graphs $[8]$, almost self-centered graphs $[6,13]$ almost peripheral graphs [\[12,14\]](#page--1-0) were recently considered. In particular, a graph containing a single eccentricity is said to be self–centered.

[∗] Corresponding author.

<https://doi.org/10.1016/j.amc.2018.05.058> 0096-3003/© 2018 Elsevier Inc. All rights reserved.

E-mail addresses: kexxu1221@126.com (K. Xu), 18761851586@163.com (X. Gu), gutman@kg.ac.rs (I. Gutman).

As usual, let *Sn*, *Pn*, *Cn*, *Kn* be the star graph, path graph, cycle graph and complete graph, respectively, on *n* vertices. For any graph *G*, we denote by *G* the complement of *G*. For two vertex-disjoint graphs *G* and *H*, their *join G*-*H* is the graph obtained from the disjoint union of *G* and *H* by adding all edges between *V*(*G*) and *V*(*H*). The *Cartesian product G*-*H* of the graphs G and H is the graph with $V(G \Box H) = V(G) \times V(H)$ and (g, h) is adjacent to (g', h') if and only if $gg' \in E(G)$ and $h = h',$ or $g = g'$ and $hh' ∈ E(H)$. If $G ≅ H$, then $G ⊡ H$ is denoted by $G^{(2)}$ for short. For $k > 2$, $G^{(k)}$ is defined analogously. Note that the well-known *n*-cube Q_n is just $K_2^{(n)}$.

Other undefined graph-theoretical notations and terminology can be found in [\[7\].](#page--1-0)

A connected graph with maximum degree at most 4 is said to be a *molecular graph*. Recall that such graphs may serve as representations of the carbon–atom skeletons of organic molecules, playing thus an outstanding role in chemical applications [\[11\].](#page--1-0)

Throughout this paper we denote the set $\{1, 2, \ldots, n\}$ by $[n]$.

In order to measure the irregularity of a graph *G*, the *total irregularity* of *G* has been defined in [\[1\]](#page--1-0) as

$$
irr_t(G) = \sum_{v_i \neq v_j} \left| \deg_G(v_j) - \deg_G(v_i) \right|,
$$

where the summation goes over all unordered pairs of vertices in *G*. Some nice results on *irr_t* are reported in [\[4,10\].](#page--1-0) Recently, for measuring the non-self-centrality of a graph, an analogous *non-self-centrality number* was introduced [\[16\]](#page--1-0) as:

$$
N(G) = \sum_{v_i \neq v_j} \left| \varepsilon_G(v_j) - \varepsilon_G(v_i) \right|,
$$

where the summation goes over all the unordered pairs of vertices in *G*.

Evidently, $irr_t(G) = N(G) = 0$ for any regular self-centered graph *G*.

Denote by $C_{p,1,q}$ and $C_{p,q}$, respectively, the graph consisting of two cycles C_p and C_q sharing a single edge, and the graph consisting of these two cycles sharing a single vertex. Then $N(C_{5,1,5}) = 24 > 12 = irr(C_{5,1,5})$, $N(C_{3,4}) = 9 < 10 = irr(C_{3,4})$ and $N(K_n - e) = 2(n - 2) = irr_t(K_n - e)$, where $e \in E(K_n)$ and $n \ge 3$. Thus, in the general case, the two graph invariants *N* and *irr_t* are incomparable.

The paper is organized as follows. In Section 2, we show that $irr_t(G) \geq N(G)$ holds for any graph with diameter 2, which implies that $irr_f(G) > N(G)$ holds for almost all graphs. In [Section](#page--1-0) 3, we introduce the concept of degree–eccentric regular graph and construct some graphs *G* with property $irr_t(G) = N(G)$. In [Section](#page--1-0) 4, we prove that $N(T) > irr_t(T)$ for any tree of order $n \geq 15$ with diameter $d \geq \frac{2n}{3}$ and maximum degree 3. In [Section](#page--1-0) 5, we propose some open problems.

2. Almost all graphs have property $irr_t(G) > N(G)$

We start this section by establishing the following auxiliary previously known result.

Lemma 1. Let G_1 and G_2 be two graphs of orders n_1 and n_2 , respectively. Then

$$
irr_t(G_1 \oplus G_2) = irr_t(G_1) + irr_t(G_2) + \sum_{v_i \in V(G_1)} \sum_{v_j \in V(G_2)} |[deg_{G_1}(v_i) + n_2] - [deg_{G_2}(v_j) + n_1]|.
$$

Proof. From the structure of the join $G_1 \oplus G_2$, we find that $deg_G(v_i) = deg_{G_1}(v_i) + n_2$ for any vertex $v_i \in V(G_1)$ and $deg_G(v_j) = deg_{G_2}(v_i) + n_1$ for any vertex $v_j \in V(G_2)$. Then the result follows from the definition of *irr_t*. \Box

From the definition of irr_t , the next observation is immediate.

Remark 2. For any graph *G*, $irr_t(G) = irr_t(\overline{G})$.

The results of Lemma 1 and Remark 2 were already presented in [\[2\].](#page--1-0) Additional results on total irregularity under graph operations could be found in [\[2,3\].](#page--1-0)

In what follows we compare $irr_t(G)$ and $N(G)$ for graphs of diameter 2.

Denote by $G^*(n, k)$ the graph of order $n \ge 4$ obtained from K_n by deleting k pairwise independent edge(s), where $1 \leq k \leq \lfloor n/2 \rfloor$. Let $\mathcal{G}^*(n) = \{G^*(n,k) : 1 \leq k \leq \lfloor n/2 \rfloor\}$. Obviously, $irr_t(G) \geq N(G) = 0$ for any self-centered graph *G*. Therefore, we only need to consider non-self-centered graphs.

Theorem 3. Assume that G is a non-self-centered graph of diameter 2 and order $n \ge 3$. Then $irr_t(G) \ge N(G)$ with equality if and *only if* $G \in \mathcal{G}^*(n)$ *.*

Proof. If *G* is self-centered, then $N(G) = 0$. Clearly, $irr_t(G) \geq N(G)$ holds. Therefore, in the following we assume that *G* is a non-self-centered graph. Since *G* has diameter 2, we have $\mathcal{E}(G) = \{1^{(\ell_1)}, 2^{(n-\ell_1)}\}$, where $0 < \ell_1 < n$ is the number of vertices with eccentricity 1, that is, of degree $n-1$. Then $N(G) = \ell_1(n-\ell_1)$. Let $|\mathcal{D}(G)| = t$. Considering that *G* is a non-self-centered graph of diameter 2, we have $t \ge 2$ and $n - 1 \in \mathcal{D}(G)$ with multiplicity ℓ_1 . Next we distinguish between the following two cases.

Case 1. $t = 2$.

Download English Version:

<https://daneshyari.com/en/article/8900749>

Download Persian Version:

<https://daneshyari.com/article/8900749>

[Daneshyari.com](https://daneshyari.com/)