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For a connected graph G , with deg G (v i ) and ε G (v i ) denoting the degree and eccentricity 

of the vertex v i , the non-self-centrality number and the total irregularity of G are de- 

fined as N(G ) = 

∑ | ε G (v j ) − ε G (v i ) | and irr t (G ) = 

∑ | deg G (v j ) − deg G (v i ) | , with summa- 

tions embracing all pairs of vertices. In this paper, we focus on relations between these 

two structural invariants. It is proved that irr t ( G ) > N ( G ) holds for almost all graphs. Some 

graphs are constructed for which N(G ) = irr t (G ) . Moreover, we prove that N ( T ) > irr t ( T ) for 

any tree T of order n ≥ 15 with diameter d ≥ 2 n /3 and maximum degree 3. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Throughout this paper, we only consider finite, undirected, simple, and connected graphs. Let G be such a graph with 

vertex set V (G ) = { v 1 , v 2 , . . . , v n } and edge set E ( G ). We denote by n ( G ) the order of G . The degree of v i ∈ V (G ) , denoted by 

deg G (v i ) , is the number of vertices in G adjacent to v i . For any positive integer i , we denote by n i ( G ), or n i for short, the 

number of vertices of degree i in the graph G . The degree set of the graph G is the set of degrees of its vertices with their 

multiplicity indicated, which we shall write as D (G ) = { i (n i ) : 1 ≤ i ≤ n − 1 } . 
For any two vertices v i , v j in a graph G , the distance between them, denoted by d G (v i , v j ) , is the length (i.e., the number 

of edges) of a shortest path connecting them in G . 

The eccentricity ε G (v i ) of the vertex v i of the graph G is the maximum distance from v i to other vertices of G , i.e., 

ε G (v i ) = max v j � = v i d G (v i , v j ) . If ε G (v i ) = d G (v i , v j ) , then v j is an eccentric vertex of the vertex v i . The eccentricity set of the 

graph G , denoted by E(G ) , is the set of the eccentricities of its vertices with their multiplicity indicated in the same manner 

as in D(G ) . 

For any graph G , its diameter and radius are defined, respectively, as: 

d = d(G ) = max 
v i ∈ V (G ) 

ε G (v i ) and r = r(G ) = min 

v i ∈ V (G ) 
ε G (v i ) . 

Recently, a novel concept related to the eccentricity – the eccentric complexity C ec ( G ) of a graph G has been introduced 

[5] . It is conceived as the number of different eccentricities in G , that is, C ec (G ) = d(G ) − r(G ) + 1 . Furthermore, several 

special eccentricity–based graphs, including self-centered graphs [8] , almost self-centered graphs [6,13] almost peripheral 

graphs [12,14] were recently considered. In particular, a graph containing a single eccentricity is said to be self–centered. 
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As usual, let S n , P n , C n , K n be the star graph, path graph, cycle graph and complete graph, respectively, on n vertices. For 

any graph G , we denote by G the complement of G . For two vertex-disjoint graphs G and H , their join G �H is the graph 

obtained from the disjoint union of G and H by adding all edges between V ( G ) and V ( H ). The Cartesian product G �H of the 

graphs G and H is the graph with V (G �H) = V (G ) × V (H) and ( g , h ) is adjacent to ( g ′ , h ′ ) if and only if gg ′ ∈ E ( G ) and h = h ′ , 
or g = g ′ and hh ′ ∈ E ( H ). If G 

∼= 

H , then G �H is denoted by G 

(2) for short. For k > 2, G 

( k ) is defined analogously. Note that the 

well-known n -cube Q n is just K 

(n ) 
2 

. 

Other undefined graph-theoretical notations and terminology can be found in [7] . 

A connected graph with maximum degree at most 4 is said to be a molecular graph . Recall that such graphs may serve as 

representations of the carbon–atom skeletons of organic molecules, playing thus an outstanding role in chemical applications 

[11] . 

Throughout this paper we denote the set { 1 , 2 , . . . , n } by [ n ]. 

In order to measure the irregularity of a graph G , the total irregularity of G has been defined in [1] as 

irr t (G ) = 

∑ 

v i � = v j 

∣∣ deg G (v j ) − deg G (v i ) 
∣∣ , 

where the summation goes over all unordered pairs of vertices in G . Some nice results on irr t are reported in [4,10] . Recently, 

for measuring the non-self-centrality of a graph, an analogous non-self-centrality number was introduced [16] as: 

N(G ) = 

∑ 

v i � = v j 

∣∣ε G (v j ) − ε G (v i ) 
∣∣ , 

where the summation goes over all the unordered pairs of vertices in G . 

Evidently, irr t (G ) = N(G ) = 0 for any regular self-centered graph G . 

Denote by C p ,1, q and C p , q , respectively, the graph consisting of two cycles C p and C q sharing a single edge, and the graph 

consisting of these two cycles sharing a single vertex. Then N(C 5 , 1 , 5 ) = 24 > 12 = irr t (C 5 , 1 , 5 ) , N(C 3 , 4 ) = 9 < 10 = irr t (C 3 , 4 ) 

and N(K n − e ) = 2(n − 2) = irr t (K n − e ) , where e ∈ E ( K n ) and n ≥ 3. Thus, in the general case, the two graph invariants N and 

irr t are incomparable. 

The paper is organized as follows. In Section 2 , we show that irr t ( G ) ≥ N ( G ) holds for any graph with diameter 2, which 

implies that irr t ( G ) > N ( G ) holds for almost all graphs. In Section 3 , we introduce the concept of degree–eccentric regular 

graph and construct some graphs G with property irr t (G ) = N(G ) . In Section 4 , we prove that N ( T ) > irr t ( T ) for any tree of 

order n ≥ 15 with diameter d ≥ 2 n 
3 and maximum degree 3. In Section 5 , we propose some open problems. 

2. Almost all graphs have property irr t ( G ) > N ( G ) 

We start this section by establishing the following auxiliary previously known result. 

Lemma 1. Let G 1 and G 2 be two graphs of orders n 1 and n 2 , respectively. Then 

ir r t ( G 1 � G 2 ) = ir r t (G 1 ) + irr t (G 2 ) + 

∑ 

v i ∈ V (G 1 ) 

∑ 

v j ∈ V (G 2 ) 

∣∣[deg G 1 (v i ) + n 2 

]
−

[
deg G 2 (v j ) + n 1 

]∣∣. 
Proof. From the structure of the join G 1 � G 2 , we find that deg G (v i ) = deg G 1 (v i ) + n 2 for any vertex v i ∈ V (G 1 ) and 

deg G (v j ) = deg G 2 (v i ) + n 1 for any vertex v j ∈ V (G 2 ) . Then the result follows from the definition of irr t . �

From the definition of irr t , the next observation is immediate. 

Remark 2. For any graph G , irr t (G ) = irr t ( G ) . 

The results of Lemma 1 and Remark 2 were already presented in [2] . Additional results on total irregularity under graph 

operations could be found in [2,3] . 

In what follows we compare irr t ( G ) and N ( G ) for graphs of diameter 2. 

Denote by G 

∗( n , k ) the graph of order n ≥ 4 obtained from K n by deleting k pairwise independent edge(s), where 

1 ≤ k ≤	 n /2 
 . Let G ∗(n ) = { G 

∗(n, k ) : 1 ≤ k ≤ 	 n/ 2 
} . Obviously, irr t (G ) ≥ N(G ) = 0 for any self–centered graph G . Therefore, 

we only need to consider non-self-centered graphs. 

Theorem 3. Assume that G is a non-self-centered graph of diameter 2 and order n ≥ 3 . Then irr t ( G ) ≥ N ( G ) with equality if and 

only if G ∈ G ∗(n ) . 

Proof. If G is self-centered, then N(G ) = 0 . Clearly, irr t ( G ) ≥ N ( G ) holds. Therefore, in the following we assume that G is a 

non-self-centered graph. Since G has diameter 2, we have E (G ) = { 1 (� 1 ) , 2 (n −� 1 ) } , where 0 < � 1 < n is the number of vertices 

with eccentricity 1, that is, of degree n − 1 . Then N(G ) = � 1 (n − � 1 ) . Let |D(G ) | = t . Considering that G is a non-self-centered 

graph of diameter 2, we have t ≥ 2 and n − 1 ∈ D(G ) with multiplicity � 1 . Next we distinguish between the following two 

cases. 

Case 1. t = 2 . 
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