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a b s t r a c t 

In this paper, we extend the improved pointwise iteration-complexity estimation of a dy- 

namic regularized alternating direction method of multipliers (ADMM) for a new stepsize 

domain. In this complexity analysis, the stepsize parameter can be chosen in the interval 

(0,2) instead of interval (0 , (1 + 

√ 

5 ) / 2) . We illustrate, by means of a numerical exper- 

iment, that the enlargement of this stepsize domain can lead to better performance of 

the method in some applications. Our complexity study is established by interpreting this 

ADMM variant as an instance of a hybrid proximal extragradient framework applied to a 

specific monotone inclusion problem. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

We are interested in the following linearly constrained convex problem 

min { f (x ) + g(y ) : Ax + By = b, x ∈ R 

n , y ∈ R 

p } , (1) 

where f : R 

n → R and g : R 

p → R are convex functions, A ∈ R 

m ×n , B ∈ R 

m ×p and b ∈ R 

m . We assume that the solution 

set of (1) is nonempty. Convex optimization problems with a separable structure such as (1) appear in many applica- 

tions areas such as machine learning, compressive sensing and image processing. The augmented Lagrangian method (see, 

e.g., [3] ) attempts to solve (1) directly without taking into account its particular structure. To overcome this drawback, a 

variant of the augmented Lagrangian method, namely, the alternating direction method of multipliers (ADMM), was pro- 

posed and studied in [10,12] . The ADMM takes full advantage of the special structure of the problem by considering each 

variable separably in an alternating form and coupling them into the Lagrange multiplier updating; for detailed reviews, 

see [5,11] . 

Lately, several versions of the ADMM for solving (1) have been proposed in the literature; see, for example, [1,4,6–

8,14–20,25,26] . A dynamic regularized ADMM (DR-ADMM) with stepsize parameter θ ∈ (0 , (1 + 

√ 

5 ) / 2) was proposed by 

Gonçalves et al. [14] , whose pointwise iteration-complexity bound considerably improved the one of the ADMM. More 

specifically, for a given tolerance ρ > 0, it follows from [14, Theorem 4.1] that the DR-ADMM terminates in at most 
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O 

(
ρ−1 log (ρ−1 ) 

)
iterations with triples ( x , y , γ ) and (v x , v y , v γ ) satisfying 

v x ∈ ∂ f (x ) − A 

∗γ , v y ∈ ∂g(y ) − B 

∗γ , v γ = Ax + By − b, ‖ (v x , v y , v γ ) ‖ ≤ ρ, (2) 

where the asterisk superscript denotes transpose of a matrix, and ∂ denotes subdifferential operator. Although different 

criteria are used, in general the ADMM and its variants need O 

(
ρ−2 

)
iterations to find triples satisfying (2) (see, e.g., 

[1,6–8,15–20,22,25] ). It is worth pointing out that the best ergodic iteration-complexity bounds known of the aforemen- 

tioned ADMMs are O 

(
ρ−1 

)
, which are better than the pointwise one of the DR-ADMM. However, the triples constructed in 

the ergodic case satisfy (2) with ρ-subdifferential operators instead of subdifferential operators. 

It is well-known that some ADMMs with stepsize parameter close to (1 + 

√ 

5 ) / 2 (i.e. close to upper limit of its domain) 

have better performance in many applications (see, e.g., [9,11] for more details). Hence, it would be reasonable to analyze 

the numerical performance and/or complexity results for these methods with a larger stepsize domain; for example, step- 

size belonging to the interval (0, 2) as in the augmented Lagrangian method. Recently, paper [13] established complexity 

results for the ADMM with stepsize θ ∈ (0, 2) for solving non-convex linearly constrained problems and, subsequently, paper 

[17] studied convergence and complexity results for the ADMM with the same stepsize domain of the present paper for the 

convex case. 

Therefore, from the theoretical viewpoint, the main goal of this work is to present complexity results for a variant of 

the DR-ADMM [14] . More specifically, we extend the improved pointwise iteration-complexity results for this ADMM for 

any stepsize θ ∈ (0 , (1 − α + 

√ 

α2 + 6 α + 5 ) / 2) , where α is a nonnegative proximal factor associated to the proximal term 

added to the second subproblem of the method (see the DR-ADMM in Section 3 ). Since the limit of ( 
√ 

α2 + 6 α + 5 − α) as 

α goes to infinity is 3, the latter stepsize domain becomes (0, 2) (resp. (0 , (1 + 

√ 

5 ) / 2) ) when α is sufficiently large (resp. 

α = 0 ). It is worth pointing out, however, that stepsize θ close to 2 implies a large proximal factor α, which may turn the 

subproblem associated to α much slower to solve due the weight of the proximal term in the objective function of the 

subproblem. From the applicability viewpoint, we report a numerical experiment, which shows that this new variant of the 

DR-ADMM with suitable proximal term α and θ ≥ (1 + 

√ 

5 ) / 2) can perform better in some applications. We mention that, 

as in [14] , our complexity study is done by rewriting problem (1) as a monotone inclusion problem and by analyzing the 

DR-ADMM in the setting of a generalized hybrid proximal extragradient (HPE) framework. 

This paper is organized as follows. In Section 2 , we present a dynamic semi-regularized HPE framework as well 

as its pointwise iteration-complexity estimation. In Section 3 , we describe the DR-ADMM and show that it can be 

viewed as an instance of the framework of Section 2 applied to a particular monotone inclusion problem. The pointwise 

iteration-complexity result for this ADMM variant is also obtained in this section. A numerical experiment is reported in 

Section 4 . 

Notation: The set of real numbers is denoted by R . The set of non-negative real numbers and the set of positive real 

numbers are denoted by R + and R ++ , respectively. For t > 0, we let log 
+ (t) := max { log t, 0 } . For a finite-dimensional real 

vector space X with inner product 〈 · , · 〉 , its induced norm is denoted by ‖ · ‖ . Denote by M 

X + the space of selfadjoint 

positive semidefinite linear operators on X . For each H ∈ M 

X + , the seminorm and (extended) dual seminorm induced by H 

on X are defined by ‖ · ‖ H := 

√ 〈 H(·) , ·〉 and ‖ · ‖ ∗
H 

:= sup {〈 ·, x ′ 〉 : ‖ x ′ ‖ H ≤ 1 } , respectively. 

2. Preliminaries results 

In this section, we present a dynamic regularized HPE framework and its pointwise iteration-complexity estimation. This 

framework is an instance of one studied in [14] . 

Consider the monotone inclusion problem (MIP) 

0 ∈ T (z) , (3) 

where Z is a finite-dimensional real vector space and T : Z ⇒ Z is a maximal monotone operator. 2 We assume that the 

solution set of (3) , denoted by T −1 (0) , is nonempty. 

The dynamic regularized HPE framework attempts to solve the inclusion (3) by solving approximately a sequence of 

regularized MIP of the following form 

0 ∈ T (z) + μM(z − z 0 ) , (4) 

where z 0 ∈ Z, μ> 0 and M ∈ M 

Z + are fixed. We also assume that the solution set of (4) 

Z̄ μ(M) := { z ∈ Z : 0 ∈ T (z) + μM(z − z 0 ) } (5) 

is nonempty for every μ> 0. It can be shown that if M is positive definite, then the operator T (·) + μM(· − z 0 ) is maximal 

( μρ0 )-strongly monotone for every μ> 0, where ρ0 is the smallest eigenvalue of M , and hence the latter assumption holds 

2 An operator T : Z ⇒ Z is said to be monotone if 〈 z − z ′ , s − s ′ 〉 ≥ 0 , for every z, z ′ ∈ Z, s ∈ T (z) and s ′ ∈ T ( z ′ ). Moreover, T is maximal monotone if it is 

monotone and, additionally, if S is a monotone operator such that T ( z ) ⊂ S ( z ) for every z ∈ Z implies T = S. 
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