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a b s t r a c t 

Let C v (k ; T ) be the number of closed walks of length k starting at vertex v in a tree T . We 

prove that for any tree T with a given degree sequence π , the vector C(k ; T ) ≡ (C v (k ; T ) , v ∈ 
V (T )) is weakly majorized by the vector C(k ; T ∗π ) ≡ (C v (k ; T ∗π ) , v ∈ V (T ∗π )) , where T ∗π is the 

greedy tree with the degree sequence π . In addition, for two trees degree sequences π
and π ′ , if π is majorized by π ′ , then C(k ; T ∗π ) is weakly majorized by C(k ; T ∗π ′ ) . 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Let G = (V (G ) , E(G )) be a simple graph of order n . A walk of G is a sequence of vertices and edges, i.e., 

w 1 e 1 w 2 e 2 . . . e k −1 w k such that e i = w i w i +1 ∈ E(G ) , i = 1 , 2 , . . . , k − 1 . In the event that w 1 = w k , then this walk is called a 

closed walk with length k − 1 . Denote by C v (k ; G ) the number of closed walks of length k starting at vertex v in G and 

the vector C(k ; G ) ≡ (C v (k ; G ) , v ∈ V (G )) . Moreover, let M k ( G ) be the number of closed walks of length k in G . The num- 

ber of closed walks of length k in G has been extensively studied. For example, Dress et al. [6] examined conditions for 

M k +1 (G ) M k −1 (G ) − M 

2 
k 
(G ) to be positive, zero, or negative. Taübig et al. [13] investigated the growth of the number M k ( G ) 

and related inequalities. The number of closed walks may also be used to characterize the complexity in the model of the 

symmetric Turing machine (see [13] ) and to study the Dense r -Subgraph Problem (see [7] ). The dense r -subgraph maximiza- 

tion problem involves computing the densest r -vertex subgraph of a given graph, thus it may be an interesting problem to 

study the number of closed walks of length k starting at a vertex in any subset U of V ( G ) with | U| = r ≤ n . If r = n, Csikvari 

[5] proved that the star has the maximum number of closed walks of length k among all the trees on n vertices, which con- 

firmed a conjecture of Nikiforov concerning the number of closed walks on trees. Further, Bollobas and Tyomkyn [4] proved 

that the KC−transformation on a tree increases the number of closed walks of length k . In addition, Andriantiana and Wag- 

ner [2] characterized the extremal trees with the maximum M k ( T ) among all trees with a given tree degree sequence π . The 

problem is still open when r < n . 
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On the other hand, the number of closed walks is directly related to the spectral radius of the adjacency matrix. Let 

A (G ) = (a i j ) be the adjacent matrix of G , where a i j = 1 if v i is adjacent to v j and 0 otherwise. Then A ( G ) has n real eigenval- 

ues λ1 ≥λ2 ≥ ... ≥λn . Since the trace of A 

k ( G ) is equal to the number of closed walks of length k in G , it is easy to see that 

M k (G ) = 

n ∑ 

i =1 

λk = 

∑ 

v ∈ V (G ) 

C v (k ; G ) , (1) 

which is also called the k th spectral moment of G . Moreover, the Estrada index [11] of G , which is related to M k ( G ) and 

proposed by Estrada, is defined to be 

E E (G ) = 

n ∑ 

i =1 

e λi . (2) 

It is easy to see 

E E (G ) = 

n ∑ 

i =1 

∞ ∑ 

k =0 

λk 
i 

k ! 
= 

∞ ∑ 

k =0 

M k (G ) 

k ! 
. (3) 

The Estrada index may have many applications in the study of molecular structures and complex networks, etc. For more 

about the Estrada index, the reader may refer to the excellent survey [9] . A nonincreasing sequence of nonnegative integers 

π = (d 0 , d 1 , . . . , d n −1 ) is called graphic if there exists a simple connected graph having π as its vertex degree sequence. For 

a given tree degree sequence π = (d 0 , d 1 , . . . , d n −1 ) , let 

T π = { T | T is any tree with π as its degree sequence } . 
There are several papers which investigated the graph parameters, such as Energy, Hosoya index and Merrifield–Simmons 

index in [1] ; the Estrada index in [2] ; the Wiener index in [8,14,15,17] ; the largest spectral radius in [3] ; the Laplacian 

spectral radius in [16] ; the number of subtrees in [18,19] , etc 

In the study of extremal problems that maximize or minimize a certain graph invariant among trees, one interesting phe- 

nomenon is that they share the same extremal tree structure. The so-called greedy trees obtained from a “greedy algorithm”

have been shown to be extremal among trees of a given degree sequence with respect to many other graph invariants such 

as the number of subtrees [19] , topological indices [12,14,17,20] , the spectral radius [3,16] and spectral moments [2] . 

In this paper, motivated by the Dense r -Subgraph Problem and the many diverse studies of the class T π , we consider the 

following problem: determine 

max 
T ∈T π

max 
U⊆V (T ) 
| U| = r 

∑ 

v ∈ U 
C k (v , T ) 

for a given tree degree sequence π . The rest of this paper is organized as follows. In Section 2 , we introduce some notations 

and present the main results of this paper. In Sections 3 and 4 , the proofs of Theorems 2.3 and 2.4 are given, respectively. 

2. Preliminary and main results 

In order to present our main results, we first introduce some notations. Let G = (V (G ) , E(G )) be a simple graph with a 

root set V 0 = { v 01 , . . . , v 0 r } ⊆ V (G ) . The height h (v ) of a vertex v in G is defined by 

h (v ) = dist(v , V 0 ) = min 

w ∈ V 0 
{ dist(v , w ) } , 

where dist(v , w ) is the distance between vertices v and w in V ( G ). Moreover, we say that v is at the h (v ) -th level. Further, 

we need the following notation from Andriantiana and Wagner [2] . 

Definition 2.1 [2] . Let F be a forest with the root set V root = { v 01 , . . . , v 0 r } and the maximum height of all components is 

l − 1 . Then, the sequence 

π = (V 0 , . . . , V l−1 ) 

is called the leveled degree sequence of F , if V i is the non-increasing sequence formed by the degrees of vertices of F at the 

i th level for any i = 0 , 1 , . . . , l − 1 . 

Definition 2.2. Let F be a forest with the following leveled degree sequence 

π = (V 0 , . . . , V l−1 ) . 

A well-ordering ≺ of the vertices in F is called breadth-first search ordering (BFS-ordering for short) if the following holds for 

all vertices u, v in the same level: 

(1) u ≺ v implies d(u ) ≥ d(v ) ; 
(2) If there are two edges uu 1 ∈ E ( F ) and vv 1 ∈ E(F ) such that u ≺ v , h (u ) = h (u 1 ) + 1 and h (v ) = h (v 1 ) + 1 , then u 1 ≺ v 1 . 
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