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a b s t r a c t 

The paper presents a low-Mach number (LM) treatment technique for high-order, Finite- 

Volume (FV) schemes for the Euler and the compressible Navier–Stokes equations. We 

concentrate our effort s on the implement ation of the LM treatment f or the unstructured 

mesh framework, both in two and three spatial dimensions, and highlight the key differ- 

ences compared with the method for structured grids. The main scope of the LM tech- 

nique is to at least maintain the accuracy of low speed regions without introducing arte- 

facts and hampering the global solution and stability of the numerical scheme. Two fam- 

ilies of spatial schemes are considered within the k-exact FV framework: the Monotonic 

Upstream-Centered Scheme for Conservation Laws (MUSCL) and the Weighted Essentially 

Non-Oscillatory (WENO). The simulations are advanced in time with an explicit third-order 

Strong Stability Preserving (SSP) Runge–Kutta method. Several flow problems are consid- 

ered for inviscid and turbulent flows where the obtained solutions are compared with ref- 

erenced data. The associated benefits of the method are analysed in terms of overall accu- 

racy, dissipation characteristics, order of scheme, spatial resolution and grid composition. 

Crown Copyright © 2018 Published by Elsevier Inc. All rights reserved. 

1. Introduction 

One of the most challenging parts of high-resolution numerical schemes is that they have to maintain adaptivity through- 

out the solution. Adaptivity, in the sense of identifying regions of sharp gradients, often encountered in compressible flows 

as well as preventing or eliminating any spurious oscillations that can occur; but at the same time they should be adaptive 

and achieve high-order of accuracy in smooth regions of the flow. There is a delicate balance between the two require- 

ments and is dependent upon the spatial discretization method, the shock-capturing algorithms, the grid types, the Riemann 

solvers, the time-stepping algorithms and the integration quadrature rules to name a few. 

The numerical methods for unstructured grids have matured and numerous elegant approaches [1–14] and algorithms 

have been developed in the FV framework for a wide range of applications in Computational Fluid Dynamics. Other state-of- 

the-art approaches have been developed, such as the Discontinuous Galerkin (DG) [2,11,15–18] , Spectral Finite-Volume (SFV) 

methods [12,19–23] , Flux Reconstruction (FR) methods [14,24] that have been successfully applied for various flow problems. 
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For the FV framework, the first class of high-resolution methods developed for unstructured grids included the Essentially 

Non-Oscillatory (ENO) type schemes [25,26] , followed by the WENO type schemes [27–30] . In the WENO case, the high- 

order accuracy was achieved by non-linearly combining a series of high-order reconstruction polynomials arising from a 

series of reconstruction stencils. Recently, a class of WENO type methods [8,9] has been successfully extended to hybrid un- 

structured meshes with various geometrical shapes such as tetrahedrals, hexahedrals, prisms,and pyramids. WENO schemes 

can achieve very high-order of spatial accuracy across interfaces between cells of different types, and non-oscillatory pro- 

files are produced for discontinuous solutions. This provides greater flexibility to handle complex geometrical shapes in an 

efficient and accurate manner. 

For the majority of the FV numerical methods applied to compressible flows, the dissipation characteristics are propor- 

tional to the speed of sound, therefore the low Mach number features are damped by the numerical scheme as noted by 

Thornber et al. [31] . This is particular important at regions of the flow where the local Mach number is small such in the 

vicinity of the boundary layer and in vortices arising from shear layers. 

There is a wealth of different approaches aiming to improve the dissipation characteristics of numerical methods for 

compressible flow equations, either by enabling their deployment for very low Mach number flows, or improving their 

resolution at low Mach number regions [32–42] . In the novel approach of Rieper [41,42] , it was shown through an one- 

dimensional analysis that the right amount of artificial viscosity on each individual characteristic variable is a prerequisite for 

an upwind scheme to approximate low Mach number flows correctly. A low diffusion preconditioning scheme was developed 

by Shen et al. [40] using 5th-order WENO scheme, and significant benefits in terms of accuracy and efficiency were noted 

for low-Mach number flows, as well transonic and supersonic flows. 

A thorough analysis of various Roe Riemann solver [43] modifications for low Mach number flows was performed by 

Li and Gu [38] , highlighting the dependence on the order of the coefficient of the velocity difference term and pressure 

difference term, along with some rules for constructing numerical schemes for all-speed flows. A low-dissipation version 

of Roe Riemann solver [43] was introduced by Oßwald et al. [39] and compared with the approach of Thornber et al. [31] ; 

the former was modifying only the dissipation term in the numerical flux function, in contrast to the approach of Thornber 

et al. [31] , where the evaluation of the physical fluxes is modified. The latter approach exhibited superior behaviour for 

the Decaying Isotropic Turbulence (DIT) test problem. Additionally, a non-physical high dissipation of energy was noted 

when using a tetrahedral mesh for the same test case with a second-order FV scheme. Another novel approach of Qu et al. 

[33] entailed the development of a new Roe-type scheme labelled RoeMAS, that exhibited high-resolution for low Mach 

number flows as well as robustness against odd-even decoupling. 

The work of Nogueira et al. [32] , presents the application of a Moving Least Squares (MLS) FV formulation, in conjunc- 

tion with a low-Mach number fix and a slope limiter. Grid dependency of the schemes was assessed, demonstrating that 

even high-order schemes can benefit from the low-Mach number fix of Rieper [41,42] . It was highlighted that the accu- 

racy problem of FV schemes for low Mach number flows can be alleviated by using high-order discretization schemes. The 

Discontinuous Galerkin (DG) schemes exhibit a similar accuracy problem to the FV schemes as shown by Bassi et al. [44] , 

where it is shown that preconditioning improves accuracy and efficiency of DG schemes in the low Mach number regime. 

All of the aforementioned approaches generally involve structured grids, or quadrilateral dominant meshes in 2D. Another 

new aspect, that was presented by Rieper and Bader [45] , is that low Mach number accuracy of FV schemes is dependent 

on the cell geometry, since when applied on a triangular grid, the accuracy problem disappears. A comprehensive asymp- 

totic analysis of this interesting phenomenon for the first-order Roe scheme [43] revealed that the leading-order velocity 

component normal to a cell edge does not jump, and that the arbitrary orientation of these triangular cells leaves enough 

degrees of freedom for the velocity field to represent a physical flow. This study did not include higher-order schemes for 

triangular meshes. However, the second-order Roe scheme [43] on unstructured triangular grids led to completely wrong 

results. It was assumed that the reconstruction process prevents the establishment of a continuous normal velocity compo- 

nent introducing the inaccurate pressure field. For higher-order schemes a smoother reconstruction which seems to prevent 

the jumps of the normal velocity component and with it the accuracy problem was identified. 

The work in this paper is a revision of the approach of Thornber et al. [31] , since the original implementation of the 

method as it will be demonstrated can not be extended to unstructured grids. A similar approach is introduced by Oßwald 

et al. [39] , where the Roe Riemann solver was employed, however that study employed these schemes to second-order 

accurate FV schemes only for tetrahedral meshes. Additionally, it was noticed that extra dissipation was observed over the 

higher wave number range for the DIT test problem, which was not fully understood. To the best of the authors knowledge 

this is a first attempt to evaluate the characteristics and the performance of a low-Mach number fix using FV methods 

for unstructured meshes of various element types for 2D and 3D inviscid and turbulent compressible flows, while also 

utilising higher-order schemes. In addition, the challenges associated with the modifications are assessed and guidelines are 

provided for further development of these techniques. The compactness of the proposed scheme following the philosophy 

of Thornber et al. [31] can be utilised with any Riemann solver in order to remove the Mach number dependence, and 

improve the resolution at low Mach number regions of the flow. The original LM treatment proposed by Thornber et al. 

[31] is not directly transferable to any grid-type since different mesh elements have different dissipation characteristics, 

therefore a unified treatment is implemented that is suitable for all element types and through the computational results 

obtained the difference between the original treatment, and the modified one are presented. Finally, a desirable feature of 

this treatment is the efficient implementation in any compressible code, for any numerical scheme that uses a Riemann 

solver with negligible additional computational expense. 
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