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New oscillation criteria for third-order delay differential equations with noncanonical op- 

erators are presented. Contrary to existing results, oscillation of the studied equation is 

attained via only two conditions. Our criteria not only improve, extend and significantly 

simplify existing ones, but the newly proposed approach could hopefully serve as a refer- 

ence in the less-developed theory of noncanonical equations of higher-order. The impor- 

tance of the results obtained is illustrated via Euler-type equations. 
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1. Introduction 

This paper deals with oscillatory behavior of solutions to a linear third-order delay differential equation of the form (
r 2 

(
r 1 y 

′ )′ )′ 
(t) + q (t ) y (τ (t )) = 0 , t ≥ t 0 > 0 . (1.1) 

Throughout, we assume that 

(H 1 ) the functions r 1 , r 2 ∈ C([ t 0 , ∞ ) , R ) are positive and satisfy 

π1 (t 0 ) := 

∫ ∞ 

t 0 

d s 

r 1 (s ) 
< ∞ and π2 (t 0 ) := 

∫ ∞ 

t 0 

d s 

r 2 (s ) 
< ∞;

(H 2 ) q ∈ C([ t 0 , ∞ ) , R ) is non-negative and does not vanish eventually on any half-line of the form [ t ∗ , ∞ ) for some t ∗ ∈ [ t 0 , 

∞ ); 

(H 3 ) τ ∈ C 1 ([ t 0 , ∞ ) , R ) is strictly increasing, τ ( t ) ≤ t , and lim t→∞ 

τ (t) = ∞ . 

The investigation of qualitative properties of (1.1) is important for applications, since such equations are considered as 

valuable tools in the modeling of many phenomena in different areas of applied mathematics and physics, see [14] . 

For the sake of brevity, we define the operators 

L 0 y = y, L 1 y = r 1 y 
′ , L 2 y = r 2 

(
r 1 y 

′ )′ 
, L 3 y = 

(
r 2 

(
r 1 y 

′ )′ )′ 
. 
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Under a solution of equation (1.1) , we mean a nontrivial function y ∈ C 1 ([ T y , ∞ ) , R ) with T y ≥ t 0 , which has the property 

L 1 y, L 2 y ∈ C 1 ([ T y , ∞ ) , R ) , and satisfies (1.1) on [ T y , ∞ ). We only consider those solutions of (1.1) which exist on some half- 

line [ T y , ∞ ) and satisfy the conditionn 

sup { | x (t) | : T ≤ t < ∞} > 0 for any T ≥ T y . 

As is customary, a solution y of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative. 

Otherwise, it is said to be nonoscillatory . The equation itself is termed oscillatory if all its solutions oscillate. 

Following classical results of Kiguradze and Kondrat’ev (see, e.g., [15] ), we say that (1.1) has property A if any solution 

y of (1.1) is either oscillatory or satisfies lim t→∞ 

y (t) = 0 . Instead of using property A, some authors say that equation is 

almost oscillatory . 

By the result of Trench [23] , the disconjugate operator L 3 can be written in an equivalent canonical form 

L 3 y (t) ≡ ˜ L 3 y (t) ≡ p 3 (t) 
(

p 2 
(

p 1 ( p 0 y ) 
′ )′ )′ 

(t) 

such that the functions p i (t) ∈ C([ t 0 , ∞ ) , R ) , i = 0 , 1 , 2 , 3 , are positive, ∫ ∞ 

t 0 

d s 

p i (s ) 
= ∞ , (i = 0 , 1 , 2) 

and uniquely determined up to positive multiplicative constants with the product 1. The explicit forms of functions p i gener- 

ally depend on the convergence or divergence of the integrals π i ( i = 1 , 2 ) and may be calculated using the proof of Lemmas 

1 and 2 in [23] . In particular, for the case assumed in this work, i.e., when (H 1 ) holds, the functions p i are of the form: 

1 

p 0 (t) 
:= π1 (t) 

∫ ∞ 

t 

v (s )d s, 

1 

p 1 (t) 
:= 

(
1 ∫ ∞ 

t v (s )d s 

)′ 
, 

1 

p 2 (t) 
:= 

∫ ∞ 

t 

v (s ) 

( 

1 ∫ ∞ 

t 
π1 (u ) 
r 2 (u ) 

d u 

) ′ 
d s, 

1 

p 3 (t) 
:= 

∫ ∞ 

t 

π1 (s ) 

r 2 (s ) 
d s, 

where 

v (t) := 

(
1 

π1 (t) 

)′ ∫ ∞ 

t 

π1 (s ) 

r 2 (s ) 
d s. 

Consequently, investigation of the qualitative behavior of canonical third-order differential equations of the form 

˜ L 3 y (t) + q (t ) y (τ (t )) = 0 , (1.2) 

especially with regard to oscillation and nonoscillation, has became the subject of extensive research. Among numerous 

monographs dealing with this topic, we choose to refer to the most recent one of Padhi and Pati [21] . 

Roughly speaking, the main advantage of studying the equation in canonical form lies in the direct application of the 

well-known Kiguradze lemma [15, Lemma 1] , which allows to classify the set of possible nonoscillatory solutions. Namely, 

if y is a positive solution of the canonical equation (1.2) , then there only the two following cases for y : 

y > 0 , ˜ L 1 y > 0 , ˜ L 2 y > 0 , ˜ L 3 y < 0 , 

y > 0 , ˜ L 1 y < 0 , ˜ L 2 y > 0 , ˜ L 3 y < 0 , 

for t large enough. Since in the ordinary case (when τ ( t ) ≡ t ), there always exists a decreasing solution of (1.2) , see [9, 

Lemma 1] , authors have used various techniques to present sufficient conditions guaranteeing property A of (1.2) . For such 

results, we refer the reader to [2,3,5,8,9,22] and the references cited therein. However, it is interesting to note that the 

delay argument can cause that (1.1) becomes oscillatory. As an example of this property, we can consider the third-order 

differential equation y ′′′ (t) + y (t − τ ) = 0 , τ > 0, which is oscillatory if and only if τe > 3 (see [16, Theorem 1] ). But the 

corresponding third-order ordinary differential equation y ′′′ (t) + y (t) = 0 has a nonoscillatory solution y (t) = e −t . There- 

fore, it is of special interest to establish new criteria ensuring oscillation of all solutions of (1.1) when τ ( t ) < t , see, e.g., 

[1,2,4,6,7,10,12,13,18,19,24] and the references cited therein. 

Turning back to (1.1) , it seems obvious that the functions p i resulting from Trench’s theory of canonical operators, which 

arise in the operator ˜ L 3 y, become generally too complicated to allow the application of existing results for canonical equa- 

tions. Another possible approach lies in the investigation of the original noncanonical equation (1.1) , at the cost of the 

existence of additional classes of possible nonoscillatory solutions (see Lemma 1 below). Such technique, which has been 
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