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a b s t r a c t 

This paper is dedicated to the derivation of multilevel Schwarz Waveform Relaxation 

(SWR) Domain Decomposition Methods (DDM) in real- and imaginary-time for the Non- 

Linear Schrödinger Equation (NLSE). In imaginary-time, it is shown that the multilevel 

SWR-DDM accelerates the convergence compared to the one-level SWR-DDM, resulting in 

an important reduction of the computational time and memory storage. In real-time, the 

method requires in addition the storage of the solution in overlapping zones at any time, 

but on coarser discretization levels. The method is numerically validated on the Classi- 

cal SWR and Robin-based SWR methods, but can however be applied to any SWR-DDM 

approach. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

This paper is devoted to the derivation of a multilevel Schwarz Waveform Relaxation (SWR) method for computing both 

in real- and imaginary-time the solution to the NonLinear Schrödinger Equation (NLSE) that models many physics prob- 

lems, including nonlinear optics and Bose–Einstein condensates [1–7] . The proposed method is also applicable to the Linear 

Schrödinger Equation (LSE) in real- and imaginary-time, in particular for solving intense and short laser-molecule inter- 

action including ionization processes. In this framework real-space numerical methods are largely used, see [8–11] , and 

DDM method is then the center of main interests. Domain decomposition SWR methods for solving wave equations have 

a long history from the classical SWR method with overlapping zones, to optimal version without overlap (see e.g. [8,12–

20] as well as http://www.ddm.org , for a complete review and references about this method). Basically in SWR methods, 

the transmission conditions at the subdomain interfaces are derived from the solution to the corresponding wave equa- 

tion, usually using Dirichlet boundary conditions (Classical SWR), Robin boundary conditions (optimized SWR), transparent 

or high-order Absorbing Boundary Conditions (ABCs) including Dirichlet-to-Neumann (DtN) transmitting conditions (Opti- 

mal SWR), or Perfectly Matched Layers [8,21,22] . We also refer to [21,23–25] for some reviews on truncation techniques for 

quantum wave equations in infinite domains. SWR methods can be a priori applied to any type of wave equation [15,26,27] . 
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In this paper, we focus on multilevel SWR for the NLSE. More specifically, we consider the cubic time-dependent (real-time) 

NLSE set on R 

d , with d ≥ 1, { 

i ∂ t φ = −� φ + V ( x ) φ + κ| φ| 2 φ, x ∈ R 

d , t > 0 , 

φ(x , 0) = φ0 (x ) , x ∈ R 

d . 

(1) 

The real-valued space-dependent smooth potential V is positive for attractive interactions, and negative for repulsive inter- 

actions. The nonlinearity strength κ is a real-valued constant which is positive for a focusing nonlinearity and negative for 

a defocusing nonlinearity. The function φ0 is a given initial data. In the sequel of the paper, P(| φ| ) denotes the nonlinear 

operator 

P(| φ| ) φ = (i ∂ t + � − V (x ) − κ| φ| 2 ) φ. (2) 

Compared to the real-time dynamics, the imaginary-time formulation [1–5] is used to compute the stationary solutions to 

the NLSE. The corresponding method is referred to as Normalized Gradient Flow (NGF) formulation [1,3–5] in the Mathemat- 

ics literature and imaginary-time method in the Physics literature. This is a very common and easy-to-implement method 

for computing the point spectrum of operators with bounded or semi-bounded spectra. It is particularly suitable for nonlin- 

ear operators, and it only requires (imaginary-)time-dependent computations. The current paper is an extension of [12,28] , 

where was derived and mathematically analyzed the convergence and the rate of convergence of 1-level SWR methods for 

solving the NLSE in imaginary time, in one and two dimensions. In this paper, we focus on multilevel preconditioning tech- 

niques, for accelerating the overall convergence of the SWR algorithm. In the imaginary-time framework (stationary state 

computation), we refer to as preconditioning the storage and use of a converged solution at a lower (coarser) level for i) 

initializing the NGF algorithm (Cauchy data selection) and for ii) deriving the transmission conditions in the overlapping 

zone interfaces at an upper (finer) level. In real-time (computation of the dynamics), preconditioning also includes the stor- 

age of the converged solution in the overlapping zones, at any time , for accurately deriving the transmission conditions. We 

numerically show that the convergence of the SWR method is improved in both cases. Although, the acceleration of the 

convergence is moderate in imaginary-time, it is however shown that the computational cost per Schwarz iteration, that is 

the NGF convergence, is strongly accelerated compared to unpreconditioned SWR methods. 

The paper is organized as follows. In Sections 2.1 and 2.2 , we recall some results about SWR methods in real- and 

imaginary-time. In Section 2.2 , we provide some elements about the Normalized Gradient Flow (NGF) method for solving 

the stationary NLSE. Section 2.3 gives some notations about the multilevel approximation. In Section 3 , we describe the 

two-level SWR method in imaginary-time, and next in real-time. A discussion on the computational complexity is also 

addressed. Section 4 is devoted to some numerical experiments, where two types of results are presented: (i) convergence 

rates for Schwarz algorithms, and (ii) NGF convergence time in imaginary-time. We finally conclude in Section 5 . 

2. SWR methods in real- and imaginary-time; notations 

2.1. SWR algorithms in real-time 

We recall the basics of SWR algorithms for two subdomains for the sake of conciseness. We introduce two open sets �±
ε

such that R 

d = �+ 
ε ∪ �−

ε , with overlapping region �+ 
ε ∩ �−

ε , where ε is a (small) non-negative parameter. In 1-d ( d = 1 ), the 

domains of interest read: �+ 
ε = 

(
− ∞ , ε/ 2 

)
, �−

ε = 

(
− ε/ 2 , ∞ 

)
and R = �+ 

ε ∪ �−
ε . with �+ 

ε ∩ �−
ε = 

(
− ε/ 2 , ε/ 2 

)
. We denote 

by φ ± the solution to the time-dependent NLSE in �±
ε . Solving the NLSE by a Schwarz waveform domain decomposition 

[8] requires some transmission conditions at the subdomain interfaces. More specifically, for any Schwarz iteration k ≥ 1, the 

equation in �±
ε reads, for a given T > 0, ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

(i ∂ t + � − V − κ| φ±, (k ) | 2 ) φ±, (k ) = 0 , on �±
ε × (0 , T ) , 

B 

±φ±, (k ) = B 

±φ∓, (k −1) , on �±
ε × (0 , T ) , 

φ±, (k ) (·, 0) = φ0 (·) on �±
ε , 

(3) 

where �±
ε = ∂�±

ε . The notation φ ± ,( k ) stands for the solution φ ± in �±
ε × (0 , T ) at Schwarz iteration k . Initially, φ ± ,(0) 

are two given functions defined in �±
ε . We denote by B 

± an operator characterizing the type of SWR algorithm. In the 

CSWR case, B 

± is the identity operator and B 

± = ∂ n ± + γ Id ( γ ∈ R 

∗+ ) for the Robin-like SWR method. For the optimal SWR 

algorithm, B 

± can be a local or a nonlocal approximation of the DtN operator (see [8,22] ). The convergence criterion for the 

Schwarz DDM is given by ∥∥ ‖ φ+ , (k ) 
| �+ 

ε
− φ−, (k ) 

| �−
ε

‖ ∞ , �ε

∥∥
L 2 (0 ,T ) 

≤ δSc . (4) 

typically with δSc = 10 −14 (“Sc” is added for Schwarz). The convergence occurs at an iteration denoted by k cvg and the 

converged global solution in real time, is given by φcvg := φ(k cvg ) . 
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