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In this article, we study numerical approximation for a class of Navier–Stokes equations 

with time fractional derivatives. We propose a scheme using finite difference approach 

in fractional derivative and Legendre-spectral method approximations in space and prove 

that the scheme is unconditionally stable. In addition, the error estimate shows that the 

numerical solutions converge with the order O(�t 2 −α + �t −αN 

1 −s ) , 0 < α < 1 being the 

order of the fractional derivative in time. Numerical examples are illustrated to verify the 

theoretical results. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

This paper is devoted to investigate a numerical scheme for the approximation of following time-fractional Navier–Stokes 

equations (TFNSE): 

D 

α
t u − ν�u + u · ∇ u + ∇p = f , in � × [0 , T ] , (1.1) 

∇ · u = 0 , in � × [0 , T ] , u | t=0 = u 0 , (1.2) 

u = 0 , on ∂� × [0 , T ] , (1.3) 

where α ∈ (0, 1) and D 

α
t denotes the Caputo fractional derivative, �⊂ R 

2 is a bound domain, u = (u 1 , u 2 ) represents the 

velocity, and p which represents the pressure. ν > 0 is the viscosity coefficient and f = ( f 1 , f 2 ) is an external force. 

TFNSE have been studied extensively due to their applications in polymer physics, electrochemistry of corrosion and 

many other physical processes. Some recent theoretical and numerical results show that the classical diffusion equation can 

not describe the phenomena in heterogeneous porous media with fractal characteristics, but fractional differential equations 

are effective in simulating anomalous diffusion process. Fractional derivatives are found to be quite flexible in describing 
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complex dynamics in viscoelastic fluids, and the hydrodynamic model with fractional derivative can eliminate the shortage 

of continuous flow hypothesis [1–5] . Based on the experimental data, He [6] proposed a fractional partial differential equa- 

tion for porous media percolation. Liu et al. [7–11] presented a series of numerical methods to solve the viscoelastic fluid 

problem with fractional derivative. 

The problem (1.1) –(1.3) turns into classical Navier–Stokes equations when α = 1 , the related numerical methods of which 

have been found in [12–18] and the references therein. Recently, El-Shahed and Salem [19] obtained the analytical solution 

for TFNSE by using Laplace, Fourier Sine transforms, and finite Hankel transforms. Carvalhoneto and Planas [20] studied 

existence and uniqueness properties of local mild solutions to the TFNSE. It is remarkable that Zhou and Peng [21,22] inves- 

tigated the existence and uniqueness of global and local mild solutions of TFNSE. 

In spite of basic theory analysis for TFNSE, some recent contributions focus on using numerical methods to approximate 

the solutions of TFNSE. For example, Ganji et al. [23] , Kumar et al. [24] have introduced a homotopy perturbation method 

to simulate differential equations of Caputo fractional order arising in fluid mechanics. Kumar et al. [25] have discussed the 

approximated analytical solutions of TFNSE by using modified fractional Laplace decomposition method. In [26] , a mixed 

finite element method was proposed and analyzed, under some certain assumptions on the u and f , they derived some 

error estimates for numerical schemes. Momani and Obibat [27] proposed a Adomian decomposition method for TFNSE in a 

tube. 

On the other hand, many numerical techniques are used to investigate fractional differential equations. Lin and Xu 

[28] proposed a finite difference/Legendre collocation spectral method to approximate Caputo fractional equation, and their 

numerical method leads to 2- α order accuracy in time and spectral accuracy in space. Li and Xu [29] constructed a time- 

space spectral method for fractional partial differential equations. Bhrawy et al. [30] presented a shifted Legendre collocation 

method to solve a time-space fractional Burgers’ equation in Caputo sense. Bhrawy et al. [31,32] introduced a Legendre spec- 

tral tau method to investigate the time-space fractional diffusion equation. 

At present, there is still a lack of effective numerical method to investigate TFNSE. In this article, we introduce and discuss 

a efficient numerical scheme to solve TFNSE. The proposed scheme is performed combining finite difference scheme for 

fractional derivative and spectral discretization for spatial variable. A detailed analysis of the numerical scheme is provided 

for both stability and error estimate. Under the appropriate assumptions, our rigorous analysis result show that the scheme 

is unconditionally stable, and that the convergent order is O(�t 2 −α + �t −αN 

1 −s ) , where �t , N and s are, respectively step of 

time, polynomial degree, and regularity of u . At last, some numerical experiments are conducted to confirm the theoretical 

claims. 

The rest of the article is organized in following way. Section 2 introduces a scheme for fractional derivative. In Section 3 , 

we discuss a error estimate of the full discrete scheme. In Section 4 , we present some numerical experiments to illustrate 

the validity of the numerical method. The conclusions of this paper is given in Section 5. 

2. Stability for semi-discretization fractional Navier–Stokes equations 

We now introduce some of the notations in this article. We use the standard notation L 2 ( �), H 

s ( �), and H 

s 
0 
(�) to denote 

the usual Sobolev spaces. We use ‖ · ‖ to denote the norm in L 2 ( �), and ( · , · ) to denote the scalar product in L 2 ( �). The 

dual space of H 

1 
0 
(�) will be denote by H 

−1 (�) , and the duality between them will be denoted by 〈 ., . 〉 . We also denote the 

following spaces 

X = { q ∈ L 2 (�) : 

∫ 
�

qd� = 0 } . (2.1) 

And a trilinear operator B ( · , · ) by 

B (u , v , w ) = (u · ∇v , w ) , u , v , w ∈ H 

1 
0 (�) . (2.2) 

Therefore, we have 

B (u , v , v ) = 0 , u , v , ∈ H 

1 
0 (�) . (2.3) 

From [33] we have the following inequality: 

‖ B (u , v , w ) ‖ ≤ C 0 ‖∇ u ‖‖∇ v ‖‖∇ w ‖ , ∀ u , v , w ∈ H 

1 
0 (�) . (2.4) 

In this context, we consider the discrete Eq. (1.1) and (1.2) in time. First, we introduce a scheme to discrete the Caputo 

derivative. For a given number T > 0 and integer M , let t n = n �t, n = 0 , 1 , . . . , M − 1 , where �t = T /M. From [28,34] , we 

know that the Caputo derivative D 

α
t u can be approximated by 

1 

�(2 − α) 

n ∑ 

j=0 

b j 
u (t n +1 − j ) − u (t n − j ) 

�t α
, (2.5) 

where b j = ( j + 1) 1 −α − j 1 −α . 
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